ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

Related tags

Deep Learningalfred
Overview

ALFRED

A Benchmark for Interpreting Grounded Instructions for Everyday Tasks
Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk,
Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, Dieter Fox
CVPR 2020

ALFRED (Action Learning From Realistic Environments and Directives), is a new benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. Long composition rollouts with non-reversible state changes are among the phenomena we include to shrink the gap between research benchmarks and real-world applications.

For the latest updates, see: askforalfred.com

What more? Checkout ALFWorld – interactive TextWorld environments for ALFRED scenes!

Quickstart

Clone repo:

$ git clone https://github.com/askforalfred/alfred.git alfred
$ export ALFRED_ROOT=$(pwd)/alfred

Install requirements:

$ virtualenv -p $(which python3) --system-site-packages alfred_env # or whichever package manager you prefer
$ source alfred_env/bin/activate

$ cd $ALFRED_ROOT
$ pip install --upgrade pip
$ pip install -r requirements.txt

Download Trajectory JSONs and Resnet feats (~17GB):

$ cd $ALFRED_ROOT/data
$ sh download_data.sh json_feat

Train models:

$ cd $ALFRED_ROOT
$ python models/train/train_seq2seq.py --data data/json_feat_2.1.0 --model seq2seq_im_mask --dout exp/model:{model},name:pm_and_subgoals_01 --splits data/splits/oct21.json --gpu --batch 8 --pm_aux_loss_wt 0.1 --subgoal_aux_loss_wt 0.1

More Info

  • Dataset: Downloading full dataset, Folder structure, JSON structure.
  • Models: Training and Evaluation, File structure, Pre-trained models.
  • Data Generation: Generation, Replay Checks, Data Augmentation (high-res, depth, segementation masks etc).
  • Errata: Updated numbers for Goto subgoal evaluation.
  • THOR 2.1.0 Docs: Deprecated documentation from Ai2-THOR 2.1.0 release.
  • FAQ: Frequently Asked Questions.

SOTA Models

Open-source models that outperform the Seq2Seq baselines from ALFRED:

Episodic Transformer for Vision-and-Language Navigation
Alexander Pashevich, Cordelia Schmid, Chen Sun
Paper, Code

MOCA: A Modular Object-Centric Approach for Interactive Instruction Following
Kunal Pratap Singh*, Suvaansh Bhambri*, Byeonghwi Kim*, Roozbeh Mottaghi, Jonghyun Choi
Paper, Code

Contact Mohit to add your model here.

Prerequisites

  • Python 3
  • PyTorch 1.1.0
  • Torchvision 0.3.0
  • AI2THOR 2.1.0

See requirements.txt for all prerequisites

Hardware

Tested on:

  • GPU - GTX 1080 Ti (12GB)
  • CPU - Intel Xeon (Quad Core)
  • RAM - 16GB
  • OS - Ubuntu 16.04

Leaderboard

Run your model on test seen and unseen sets, and create an action-sequence dump of your agent:

$ cd $ALFRED_ROOT
$ python models/eval/leaderboard.py --model_path <model_path>/model.pth --model models.model.seq2seq_im_mask --data data/json_feat_2.1.0 --gpu --num_threads 5

This will create a JSON file, e.g. task_results_20191218_081448_662435.json, inside the <model_path> folder. Submit this JSON here: AI2 ALFRED Leaderboard. For rules and restrictions, see the getting started page.

Rules:

  1. You are only allowed to use RGB and language instructions (goal & step-by-step) as input for your agents. You cannot use additional depth, mask, metadata info etc. from the simulator on Test Seen and Test Unseen scenes. However, during training you are allowed to use additional info for auxiliary losses etc.
  2. During evaluation, agents are restricted to max_steps=1000 and max_fails=10. Do not change these settings in the leaderboard script; these modifications will not be reflected in the evaluation server.
  3. Pick a legible model name for the submission. Just "baseline" is not very descriptive.
  4. All submissions must be attempts to solve the ALFRED dataset.
  5. Answer the following questions in the description: a. Did you use additional sensory information from THOR as input, eg: depth, segmentation masks, class masks, panoramic images etc. during test-time? If so, please report them. b. Did you use the alignments between step-by-step instructions and expert action-sequences for training or testing? (no by default; the instructions are serialized into a single sentence)
  6. Share who you are: provide a team name and affiliation.
  7. (Optional) Share how you solved it: if possible, share information about how the task was solved. Link an academic paper or code repository if public.
  8. Only submit your own work: you may evaluate any model on the validation set, but must only submit your own work for evaluation against the test set.

Docker Setup

Install Docker and NVIDIA Docker.

Modify docker_build.py and docker_run.py to your needs.

Build

Build the image:

$ python scripts/docker_build.py 

Run (Local)

For local machines:

$ python scripts/docker_run.py
 
  source ~/alfred_env/bin/activate
  cd $ALFRED_ROOT

Run (Headless)

For headless VMs and Cloud-Instances:

$ python scripts/docker_run.py --headless 

  # inside docker
  tmux new -s startx  # start a new tmux session

  # start nvidia-xconfig (might have to run this twice)
  sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024
  sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024

  # start X server on DISPLAY 0
  # single X server should be sufficient for multiple instances of THOR
  sudo python ~/alfred/scripts/startx.py 0  # if this throws errors e.g "(EE) Server terminated with error (1)" or "(EE) already running ..." try a display > 0

  # detach from tmux shell
  # Ctrl+b then d

  # source env
  source ~/alfred_env/bin/activate
  
  # set DISPLAY variable to match X server
  export DISPLAY=:0

  # check THOR
  cd $ALFRED_ROOT
  python scripts/check_thor.py

  ###############
  ## (300, 300, 3)
  ## Everything works!!!

You might have to modify X_DISPLAY in gen/constants.py depending on which display you use.

Cloud Instance

ALFRED can be setup on headless machines like AWS or GoogleCloud instances. The main requirement is that you have access to a GPU machine that supports OpenGL rendering. Run startx.py in a tmux shell:

# start tmux session
$ tmux new -s startx 

# start X server on DISPLAY 0
# single X server should be sufficient for multiple instances of THOR
$ sudo python $ALFRED_ROOT/scripts/startx.py 0  # if this throws errors e.g "(EE) Server terminated with error (1)" or "(EE) already running ..." try a display > 0

# detach from tmux shell
# Ctrl+b then d

# set DISPLAY variable to match X server
$ export DISPLAY=:0

# check THOR
$ cd $ALFRED_ROOT
$ python scripts/check_thor.py

###############
## (300, 300, 3)
## Everything works!!!

You might have to modify X_DISPLAY in gen/constants.py depending on which display you use.

Also, checkout this guide: Setting up THOR on Google Cloud

Citation

If you find the dataset or code useful, please cite:

@inproceedings{ALFRED20,
  title ={{ALFRED: A Benchmark for Interpreting Grounded
           Instructions for Everyday Tasks}},
  author={Mohit Shridhar and Jesse Thomason and Daniel Gordon and Yonatan Bisk and
          Winson Han and Roozbeh Mottaghi and Luke Zettlemoyer and Dieter Fox},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2020},
  url  = {https://arxiv.org/abs/1912.01734}
}

License

MIT License

Change Log

14/10/2020:

  • Added errata for Goto subgoal evaluation.

28/10/2020:

  • Added --use_templated_goals option to train with templated goals instead of human-annotated goal descriptions.

26/10/2020:

  • Fixed missing stop-frame in Modeling Quickstart dataset (json_feat_2.1.0.zip).

07/04/2020:

  • Updated download links. Switched from Google Cloud to AWS. Old download links will be deactivated.

28/03/2020:

  • Updated the mask-interaction API to use IoU scores instead of max pixel count for selecting objects.
  • Results table in the paper will be updated with new numbers.

Contact

Questions or issues? Contact [email protected]

Owner
ALFRED
ALFRED
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022