Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

Overview

K-BERT

Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework.

Requirements

Software:

Python3
Pytorch >= 1.0
argparse == 1.1

Prepare

  • Download the google_model.bin from here, and save it to the models/ directory.
  • Download the CnDbpedia.spo from here, and save it to the brain/kgs/ directory.
  • Optional - Download the datasets for evaluation from here, unzip and place them in the datasets/ directory.

The directory tree of K-BERT:

K-BERT
├── brain
│   ├── config.py
│   ├── __init__.py
│   ├── kgs
│   │   ├── CnDbpedia.spo
│   │   ├── HowNet.spo
│   │   └── Medical.spo
│   └── knowgraph.py
├── datasets
│   ├── book_review
│   │   ├── dev.tsv
│   │   ├── test.tsv
│   │   └── train.tsv
│   ├── chnsenticorp
│   │   ├── dev.tsv
│   │   ├── test.tsv
│   │   └── train.tsv
│    ...
│
├── models
│   ├── google_config.json
│   ├── google_model.bin
│   └── google_vocab.txt
├── outputs
├── uer
├── README.md
├── requirements.txt
├── run_kbert_cls.py
└── run_kbert_ner.py

K-BERT for text classification

Classification example

Run example on Book review with CnDbpedia:

CUDA_VISIBLE_DEVICES='0' nohup python3 -u run_kbert_cls.py \
    --pretrained_model_path ./models/google_model.bin \
    --config_path ./models/google_config.json \
    --vocab_path ./models/google_vocab.txt \
    --train_path ./datasets/book_review/train.tsv \
    --dev_path ./datasets/book_review/dev.tsv \
    --test_path ./datasets/book_review/test.tsv \
    --epochs_num 5 --batch_size 32 --kg_name CnDbpedia \
    --output_model_path ./outputs/kbert_bookreview_CnDbpedia.bin \
    > ./outputs/kbert_bookreview_CnDbpedia.log &

Results:

Best accuracy in dev : 88.80%
Best accuracy in test: 87.69%

Options of run_kbert_cls.py:

useage: [--pretrained_model_path] - Path to the pre-trained model parameters.
        [--config_path] - Path to the model configuration file.
        [--vocab_path] - Path to the vocabulary file.
        --train_path - Path to the training dataset.
        --dev_path - Path to the validating dataset.
        --test_path - Path to the testing dataset.
        [--epochs_num] - The number of training epoches.
        [--batch_size] - Batch size of the training process.
        [--kg_name] - The name of knowledge graph, "HowNet", "CnDbpedia" or "Medical".
        [--output_model_path] - Path to the output model.

Classification benchmarks

Accuracy (dev/test %) on different dataset:

Dataset HowNet CnDbpedia
Book review 88.75/87.75 88.80/87.69
ChnSentiCorp 95.00/95.50 94.42/95.25
Shopping 97.01/96.92 96.94/96.73
Weibo 98.22/98.33 98.29/98.33
LCQMC 88.97/87.14 88.91/87.20
XNLI 77.11/77.07 76.99/77.43

K-BERT for named entity recognization (NER)

NER example

Run an example on the msra_ner dataset with CnDbpedia:

CUDA_VISIBLE_DEVICES='0' nohup python3 -u run_kbert_ner.py \
    --pretrained_model_path ./models/google_model.bin \
    --config_path ./models/google_config.json \
    --vocab_path ./models/google_vocab.txt \
    --train_path ./datasets/msra_ner/train.tsv \
    --dev_path ./datasets/msra_ner/dev.tsv \
    --test_path ./datasets/msra_ner/test.tsv \
    --epochs_num 5 --batch_size 16 --kg_name CnDbpedia \
    --output_model_path ./outputs/kbert_msraner_CnDbpedia.bin \
    > ./outputs/kbert_msraner_CnDbpedia.log &

Results:

The best in dev : precision=0.957, recall=0.962, f1=0.960
The best in test: precision=0.953, recall=0.959, f1=0.956

Options of run_kbert_ner.py:

useage: [--pretrained_model_path] - Path to the pre-trained model parameters.
        [--config_path] - Path to the model configuration file.
        [--vocab_path] - Path to the vocabulary file.
        --train_path - Path to the training dataset.
        --dev_path - Path to the validating dataset.
        --test_path - Path to the testing dataset.
        [--epochs_num] - The number of training epoches.
        [--batch_size] - Batch size of the training process.
        [--kg_name] - The name of knowledge graph.
        [--output_model_path] - Path to the output model.

K-BERT for domain-specific tasks

Experimental results on domain-specific tasks (Precision/Recall/F1 %):

KG Finance_QA Law_QA Finance_NER Medicine_NER
HowNet 0.805/0.888/0.845 0.842/0.903/0.871 0.860/0.888/0.874 0.935/0.939/0.937
CN-DBpedia 0.814/0.881/0.846 0.814/0.942/0.874 0.860/0.887/0.873 0.935/0.937/0.936
MedicalKG -- -- -- 0.944/0.943/0.944

Acknowledgement

This work is a joint study with the support of Peking University and Tencent Inc.

If you use this code, please cite this paper:

@inproceedings{weijie2019kbert,
  title={{K-BERT}: Enabling Language Representation with Knowledge Graph},
  author={Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, Ping Wang},
  booktitle={Proceedings of AAAI 2020},
  year={2020}
}
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022