Neural Ensemble Search for Performant and Calibrated Predictions

Related tags

Deep Learningnes
Overview

Neural Ensemble Search

Introduction

This repo contains the code accompanying the paper:

Neural Ensemble Search for Performant and Calibrated Predictions

Authors: Sheheryar Zaidi*, Arber Zela*, Thomas Elsken, Chris Holmes, Frank Hutter and Yee Whye Teh.

The paper introduces two NES algorithms for finding ensembles with varying baselearner architectures with the aim of producing performant and calibrated predictions for both in-distribution data and during distributional shift.

The code, as provided here, makes use of the SLURM job scheduler, however, one should be able to make changes to run the code without SLURM.

News: Oral presentation at the Uncertainty & Robustness in Deep Learning (UDL) Workshop @ ICML 2020

Setting up virtual environment

First, clone and cd to the root of repo:

git clone https://github.com/automl/nes.git
cd nes

We used Python 3.6 and PyTorch 1.3.1 with CUDA 10.0 (see requirements.txt) for running our experiments. For reproducibility, we recommend using these python and CUDA versions. To set up the virtual environment execute the following (python points to Python 3.6):

python -m venv venv

Then, activate the environment using:

source venv/bin/activate

Now install requirements.txt packages by:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

Generating the CIFAR-10-C dataset

To run the experiments on CIFAR-10-C (Hendrycks and Dietterich, ICLR 2019), first generate the shifted data. Begin by downloading the CIFAR-10 dataset by executing the following command:

python -c "import torchvision.datasets as dset; dset.CIFAR10(\"data\", train=True, download=True)"

Next, run the cluster_scripts/generate_corrupted.sh script to generate the shifted data using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/generate_corrupted.sh

$GPU_CLUSTER_PARTITION is the name of the cluster partition you want to submit the array job to.

To run this without SLURM, use the following command which runs sequentially rather than in parallel:

for i in 0..18; do PYTHONPATH=$PWD python data/generate_corrupted.py $i; done

Running the experiments

The structure for running the two Neural Ensemble Search (NES) algorithms, NES-RS and NES-RE consists of three steps: train the base learners, apply ensemble selection and evaluate the final ensembles. We compared to three deep ensemble baselines: DeepEns (RS), DeepEns (DARTS) and DeepEns(AmoebaNet). The latter two simply require training the baselearners and evaluating the ensemble. For DeepEns (RS), we require an extra intermediate step of picking the "incumbent" architecture (i.e. best architecture by validation loss) from a randomly sampled pool of architectures. For a fair and efficient comparison, we use the same randomly sampled (and trained) pool of architectures used by NES-RS.

Running NES

We describe how to run NES algorithms for CIFAR-10-C using the scripts in cluster_scripts/cifar10/; for Fashion-MNIST, proceed similarly but using the scripts in cluster_scripts/fmnist/. For NES algorithms, we first train the base learners in parallel by the commands:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_rs.sh (NES-RS)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_re.sh (NES-RE)

These scripts will run the NES search for 400 iterations using the same hyperparameters as described in the paper to build the pools of base learners. All baselearners (trained network parameters, predictions across all severity levels, etc.) will be saved in experiments/cifar10/baselearners/ (experiments/fmnist/baselearners/ for Fashion-MNIST).

Next, we perform ensemble selection given the pools built by NES-RS and NES-RE using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/ensembles_from_pools.sh

We will return to the final step of ensemble evaluation.

Running Deep Ensemble Baselines

To run the deep ensemble baselines DeepEns (AmoebaNet) and DeepEns (DARTS), we first train the base learners in parallel using the scripts:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_amoeba.sh (DeepEns-AmoebaNet)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_darts.sh (DeepEns-DARTS)

These will train the DARTS and AmoebaNet architectures with different random initializations and save the results again in experiments/cifar10/baselearners/.

To run DeepEns-RS, we first have to extract the incumbent architectures from the random sample produced by the NES-RS run above. For that, run:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/get_incumbents_rs.sh

which saves incumbent architecture ids in experiments/cifar10/outputs/deepens_rs/incumbents.txt. Then run the following loop to train multiple random initializations of each of the incumbent architectures:

for arch_id in $(cat < experiments/cifar10/outputs/deepens_rs/incumbents.txt); do sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_rs.sh $arch_id; done

Evaluating the Ensembles

When all the runs above are complete, all base learners are trained, and we can evaluate all the ensembles (on in-distribution and shifted data). To do that, run the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/evaluate_ensembles.sh

Plotting the results

Finally, after all the aforementioned steps have been completed, we plot the results by running:

bash cluster_scripts/cifar10/plot_data.sh

This will save the plots in experiments/cifar10/outputs/plots.

Figures from the paper

Results on Fashion-MNIST: Loss fmnist

NES with Regularized Evolution: nes-re

For more details, please refer to the original paper.

Citation

@article{zaidi20,
  author  = {Sheheryar Zaidi and Arber Zela and Thomas Elsken and Chris Holmes and Frank Hutter and Yee Whye Teh},
  title   = {{Neural} {Ensemble} {Search} for {Performant} and {Calibrated} {Predictions}},
  journal = {arXiv:2006.08573 {cs.LG}},
  year    = {2020},
  month   = jun,
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022