Semantic Bottleneck Scene Generation

Related tags

Deep LearningSB-GAN
Overview

SB-GAN

Semantic Bottleneck Scene Generation

Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the flexibility of unconditional generative models, we propose a semantic bottleneck GAN model for unconditional synthesis of complex scenes. We assume pixel-wise segmentation labels are available during training and use them to learn the scene structure. During inference, our model first synthesizes a realistic segmentation layout from scratch, then synthesizes a realistic scene conditioned on that layout. For the former, we use an unconditional progressive segmentation generation network that captures the distribution of realistic semantic scene layouts. For the latter, we use a conditional segmentation-to-image synthesis network that captures the distribution of photo-realistic images conditioned on the semantic layout. When trained end-to-end, the resulting model outperforms state-of-the-art generative models in unsupervised image synthesis on two challenging domains in terms of the Frechet Inception Distance and user-study evaluations. Moreover, we demonstrate the generated segmentation maps can be used as additional training data to strongly improve recent segmentation-to-image synthesis networks.

Paper

[Paper 3.5MB]  [arXiv]

Code

Prerequisites:

  • NVIDIA GPU + CUDA CuDNN
  • Python 3.6
  • PyTorch 1.0
  • Please install dependencies by
pip install -r requirements.txt

Preparation

  • Clone this repo with its submodules
git clone --recurse-submodules -j8 https://github.com/azadis/SB-GAN.git
cd SB-GAN/SPADE/models/networks/
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../../

Datasets

ADE-Indoor

  • To have access to the indoor images from the ADE20K dataset and their corresponding segmentation maps used in our paper:
cd SB-GAN
bash SBGAN/datasets/download_ade.sh
cd ..

Cityscapes

cd SB-GAN/SBGAN/datasets
mkdir cityscapes
cd cityscapes
  • Download and unzip leftImg8bit_trainvaltest.zip and gtFine_trainvaltest.zip from the Cityscapes webpage .
mv leftImg8bit_trainvaltest/leftImg8bit ./
mv gtFine_trainvaltest/gtFine ./

Cityscapes-25k

  • In addition to the 5K portion already downloaded, download and unzip leftImg8bit_trainextra.zip. You can have access to the fine annotations of these 20K images we used in our paper by:
wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/drn_d_105_000_test.tar.gz
tar -xzvf drn_d_105_000_test.tar.gz

These annotations are predicted by a DRN trained on the 5K fine-annotated portion of Cityscapes with 19 semantic categories. The new fine annotations of the 5K portion with 19 semantic classes can be also downloaded by:

wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/gtFine_new.tar.gz
tar -xzvf gtFine_new.tar.gz
cd ../../../..

Training

cd SB-GAN/SBGAN

  • On each $dataset in ade_indoor, cityscapes, cityscapes_25k:
  1. Semantic bottleneck synthesis:
bash SBGAN/scipts/$dataset/train_progressive_seg.sh
  1. Semantic image synthesis:
cd ../SPADE
bash scripts/$dataset/train_spade.sh
  1. Train the end2end SBGAN model:
cd ../SBGAN
bash SBGAN/scripts/$dataset/train_finetune_end2end.sh
  • In the above script, set $pro_iter to the iteration number of the checkpoint saved from step 1 that you want to use before fine-tuning. Also, set $spade_epoch to the last epoch saved for SPADE from step 2.
  • To visualize the training you have started in steps 1 and 3 on a ${date-time}, run the following commands. Then, open http://localhost:6006/ on your web browser.
cd SBGAN/logs/${date-time}
tensorboard --logdir=. --port=6006

Testing

To compute FID after training the end2end model, for each $dataset, do:

bash SBGAN/scripts/$dataset/test_finetune_end2end.sh
  • In the above script, set $pro_iter and $spade_epoch to the appropriate checkpoints saved from your end2end training.

Citation

If you use this code, please cite our paper:

@article{azadi2019semantic,
  title={Semantic Bottleneck Scene Generation},
  author={Azadi, Samaneh and Tschannen, Michael and Tzeng, Eric and Gelly, Sylvain and Darrell, Trevor and Lucic, Mario},
  journal={arXiv preprint arXiv:1911.11357},
  year={2019}
}
Owner
Samaneh Azadi
CS PhD student at UC Berkeley
Samaneh Azadi
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022