CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

Overview

CRAFT-Reimplementation

Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 .

Reimplementation:Character Region Awareness for Text Detection Reimplementation based on Pytorch

Character Region Awareness for Text Detection

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, Hwalsuk Lee (Submitted on 3 Apr 2019)

The full paper is available at: https://arxiv.org/pdf/1904.01941.pdf

Install Requirements:

1、PyTroch>=0.4.1
2、torchvision>=0.2.1
3、opencv-python>=3.4.2
4、check requiremtns.txt
5、4 nvidia GPUs(we use 4 nvidia titanX)

pre-trained model:

NOTE: There are old pre-trained models, I will upload the new results pre-trained models' link.
Syndata:Syndata for baidu drive || Syndata for google drive
Syndata+IC15:Syndata+IC15 for baidu drive || Syndata+IC15 for google drive
Syndata+IC13+IC17:Syndata+IC13+IC17 for baidu drive|| Syndata+IC13+IC17 for google drive

Training

Note: When you train the IC15-Data or MLT-Data, please see the annotation in data_loader.py line 92 and line 108-112.

Train for Syndata

  • download the Syndata(I will give the link)
  • change the path in basernet/vgg16_bn.py file:

(/data/CRAFT-pytorch/vgg16_bn-6c64b313.pth -> /your_path/vgg16_bn-6c64b313.pth).You can download the model here.baidu||google

  • change the path in trainSyndata.py file:

(1、/data/CRAFT-pytorch/SynthText -> /your_path/SynthText 2、/data/CRAFT-pytorch/synweights/synweights -> /your_path/real_weights)

  • Run python trainSyndata.py

Train for IC15 data based on Syndata pre-trained model

  • download the IC15 data, rename the image file and the gt file for ch4_training_images and ch4_training_localization_transcription_gt,respectively.
  • change the path in basernet/vgg16_bn.py file:

(/data/CRAFT-pytorch/vgg16_bn-6c64b313.pth -> /your_path/vgg16_bn-6c64b313.pth).You can download the model here.baidu||google

  • change the path in trainic15data.py file:

(1、/data/CRAFT-pytorch/SynthText -> /your_path/SynthText 2、/data/CRAFT-pytorch/real_weights -> /your_path/real_weights)

  • change the path in trainic15data.py file:

(1、/data/CRAFT-pytorch/1-7.pth -> /your_path/your_pre-trained_model_name 2、/data/CRAFT-pytorch/icdar1317 -> /your_ic15data_path/)

  • Run python trainic15data.py

Train for IC13+17 data based on Syndata pre-trained model

  • download the MLT data, rename the image file and the gt file,respectively.
  • change the path in basernet/vgg16_bn.py file:

(/data/CRAFT-pytorch/vgg16_bn-6c64b313.pth -> /your_path/vgg16_bn-6c64b313.pth).You can download the model here.baidu||google

  • change the path in trainic-MLT_data.py file:

(1、/data/CRAFT-pytorch/SynthText -> /your_path/SynthText 2、savemodel path-> your savemodel path)

  • change the path in trainic-MLT_data.py file:

(1、/data/CRAFT-pytorch/1-7.pth -> /your_path/your_pre-trained_model_name 2、/data/CRAFT-pytorch/icdar1317 -> /your_ic15data_path/)

  • Run python trainic-MLT_data.py

If you want to train for weak supervised use our Syndate pre-trained model:

1、You should first download the pre_trained model trained in the Syndata baidu||google.
2、change the data path and pre-trained model path.
3、run python trainic15data.py

This code supprts for Syndata and icdar2015, and we will release the training code for IC13 and IC17 as soon as possible.

Methods dataset Recall precision H-mean
Syndata ICDAR13 71.93% 81.31% 76.33%
Syndata+IC15 ICDAR15 76.12% 84.55% 80.11%
Syndata+MLT(deteval) ICDAR13 86.81% 95.28% 90.85%
Syndata+MLT(deteval)(new gaussian map method) ICDAR13 90.67% 94.56% 92.57%
Syndata+IC15(new gaussian map method) ICDAR15 80.36% 84.25% 82.26%

We have released the latest code with new gaussian map and random crop algorithm.

Note:new gaussian map method can split the inference gaussian region score map
Sample:

Note:We have solved the problem about detecting big word. Now we are training the model. And any issues or advice are welcome.

Sample:

###weChat QR code

Contributing to the project

We will release training code as soon as possible, and we have not yet reached the results given in the author's paper. Any pull requests or issues are welcome. We also hope that you could give us some advice for the project.

Acknowledgement

Thanks for Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, Hwalsuk Lee excellent work and code for test. In this repo, we use the author repo's basenet and test code.

License

For commercial use, please contact us.

Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining

Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth

Deep Learning and Vision Computing Lab, SCUT 197 Jan 05, 2023
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Um RPG de texto orientado a objetos.

RPG de texto Um RPG de texto orientado a objetos, sem história. Um RPG (Role-playing game) baseado em texto em que você pode viajar para alguns locais

Vinicius 3 Oct 05, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc

dengdan 484 Dec 07, 2022
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:

PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu

Michael liu 498 Dec 30, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Jan 05, 2023
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
Steve Tu 71 Dec 30, 2022
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)第一名;仅采用densenet识别图中文字

OCR 第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)冠军 模型结果 该比赛计算每一个条目的f1score,取所有条目的平均,具体计算方式在这里。这里的计算方式不对一句话里的相同文字重复计算,故f1score比提交的最终结果低: - train val f1score 0

尹畅 441 Dec 22, 2022
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023