flask extension for integration with the awesome pydantic package

Overview

Flask-Pydantic

Actions Status PyPI Language grade: Python License Code style

Flask extension for integration of the awesome pydantic package with Flask.

Installation

python3 -m pip install Flask-Pydantic

Basics

validate decorator validates query and body request parameters and makes them accessible two ways:

  1. Using validate arguments, via flask's request variable
parameter type request attribute name
query query_params
body body_params
  1. Using the decorated function argument parameters type hints

  • Success response status code can be modified via on_success_status parameter of validate decorator.
  • response_many parameter set to True enables serialization of multiple models (route function should therefore return iterable of models).
  • request_body_many parameter set to False analogically enables serialization of multiple models inside of the root level of request body. If the request body doesn't contain an array of objects 400 response is returned,
  • If validation fails, 400 response is returned with failure explanation.

For more details see in-code docstring or example app.

Usage

Example 1: Query parameters only

Simply use validate decorator on route function.

Be aware that @app.route decorator must precede @validate (i. e. @validate must be closer to the function declaration).

from typing import Optional
from flask import Flask, request
from pydantic import BaseModel

from flask_pydantic import validate

app = Flask("flask_pydantic_app")

class QueryModel(BaseModel):
  age: int

class ResponseModel(BaseModel):
  id: int
  age: int
  name: str
  nickname: Optional[str]

# Example 1: query parameters only
@app.route("/", methods=["GET"])
@validate()
def get(query:QueryModel):
  age = query.age
  return ResponseModel(
    age=age,
    id=0, name="abc", nickname="123"
    )
See the full example app here
  • age query parameter is a required int
    • curl --location --request GET 'http://127.0.0.1:5000/'
    • if none is provided the response contains:
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "field required",
              "type": "value_error.missing"
            }
          ]
        }
      }
    • for incompatible type (e. g. string /?age=not_a_number)
    • curl --location --request GET 'http://127.0.0.1:5000/?age=abc'
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "value is not a valid integer",
              "type": "type_error.integer"
            }
          ]
        }
      }
  • likewise for body parameters
  • example call with valid parameters: curl --location --request GET 'http://127.0.0.1:5000/?age=20'

-> {"id": 0, "age": 20, "name": "abc", "nickname": "123"}

Example 2: Request body only

class RequestBodyModel(BaseModel):
  name: str
  nickname: Optional[str]

# Example2: request body only
@app.route("/", methods=["POST"])
@validate()
def post(body:RequestBodyModel): 
  name = body.name
  nickname = body.nickname
  return ResponseModel(
    name=name, nickname=nickname,id=0, age=1000
    )
See the full example app here

Example 3: BOTH query paramaters and request body

# Example 3: both query paramters and request body
@app.route("/both", methods=["POST"])
@validate()
def get_and_post(body:RequestBodyModel,query:QueryModel):
  name = body.name # From request body
  nickname = body.nickname # From request body
  age = query.age # from query parameters
  return ResponseModel(
    age=age, name=name, nickname=nickname,
    id=0
  )
See the full example app here

Modify response status code

The default success status code is 200. It can be modified in two ways

  • in return statement
# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel)
def post():
    return ResponseModel(
            id=id_,
            age=request.query_params.age,
            name=request.body_params.name,
            nickname=request.body_params.nickname,
        ), 201
  • in validate decorator
@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel, on_success_status=201)
def post():
    ...

Status code in case of validation error can be modified using FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE flask configuration variable.

Using the decorated function kwargs

Instead of passing body and query to validate, it is possible to directly defined them by using type hinting in the decorated function.

# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate()
def post(body: BodyModel, query: QueryModel):
    return ResponseModel(
            id=id_,
            age=query.age,
            name=body.name,
            nickname=body.nickname,
        )

This way, the parsed data will be directly available in body and query. Furthermore, your IDE will be able to correctly type them.

Model aliases

Pydantic's alias feature is natively supported for query and body models. To use aliases in response modify response model

def modify_key(text: str) -> str:
    # do whatever you want with model keys
    return text


class MyModel(BaseModel):
    ...
    class Config:
        alias_generator = modify_key
        allow_population_by_field_name = True

and set response_by_alias=True in validate decorator

@app.route(...)
@validate(response_by_alias=True)
def my_route():
    ...
    return MyModel(...)

Example app

For more complete examples see example application.

Configuration

The behaviour can be configured using flask's application config FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE - response status code after validation error (defaults to 400)

Contributing

Feature requests and pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

  • clone repository
    git clone https://github.com/bauerji/flask_pydantic.git
    cd flask_pydantic
  • create virtual environment and activate it
    python3 -m venv venv
    source venv/bin/activate
  • install development requirements
    python3 -m pip install -r requirements/test.pip
  • checkout new branch and make your desired changes (don't forget to update tests)
    git checkout -b <your_branch_name>
  • run tests
    python3 -m pytest
  • if tests fails on Black tests, make sure You have your code compliant with style of Black formatter
  • push your changes and create a pull request to master branch

TODOs:

  • header request parameters
  • cookie request parameters
Gallery of applications built using bqplot and widget libraries like ipywidgets, ipydatagrid etc.

bqplot Gallery This is a gallery of bqplot examples. View the gallery at https://bqplot.github.io/bqplot-gallery. Contributing new examples Clone this

8 Aug 23, 2022
Pyan3 - Offline call graph generator for Python 3

Pyan takes one or more Python source files, performs a (rather superficial) static analysis, and constructs a directed graph of the objects in the combined source, and how they define or use each oth

Juha Jeronen 235 Jan 02, 2023
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
Gesture controlled media player

Media Player Gesture Control Gesture controller for media player with MediaPipe, VLC and OpenCV. Contents About Setup About A tool for using gestures

Atharva Joshi 2 Dec 22, 2021
a simple REPL display lib for circuitpython

Circuitpython-termio-lib a simple REPL display lib for circuitpython Fonctions cls clear terminal screen and set cursor on top left : coords 0,0 usage

BeBoXoS 1 Nov 17, 2021
It's an application to calculate I from v and r. It can also plot a graph between V vs I.

Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde

Sihab Sahariar 1 Nov 20, 2021
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
Simple and fast histogramming in Python accelerated with OpenMP.

pygram11 Simple and fast histogramming in Python accelerated with OpenMP with help from pybind11. pygram11 provides functions for very fast histogram

Doug Davis 28 Dec 14, 2022
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
The windML framework provides an easy-to-use access to wind data sources within the Python world, building upon numpy, scipy, sklearn, and matplotlib. Renewable Wind Energy, Forecasting, Prediction

windml Build status : The importance of wind in smart grids with a large number of renewable energy resources is increasing. With the growing infrastr

Computational Intelligence Group 125 Dec 24, 2022
An interactive GUI for WhiteboxTools in a Jupyter-based environment

whiteboxgui An interactive GUI for WhiteboxTools in a Jupyter-based environment GitHub repo: https://github.com/giswqs/whiteboxgui Documentation: http

Qiusheng Wu 105 Dec 15, 2022
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 29, 2022
Automatic data visualization in atom with the nteract data-explorer

Data Explorer Interactively explore your data directly in atom with hydrogen! The nteract data-explorer provides automatic data visualization, so you

Ben Russert 65 Dec 01, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 694 Jan 04, 2023
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
A central task in drug discovery is searching, screening, and organizing large chemical databases

A central task in drug discovery is searching, screening, and organizing large chemical databases. Here, we implement clustering on molecular similarity. We support multiple methods to provide a inte

NVIDIA Corporation 124 Jan 07, 2023
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Marc 611 Dec 29, 2022
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 697 Jan 06, 2023