flask extension for integration with the awesome pydantic package

Overview

Flask-Pydantic

Actions Status PyPI Language grade: Python License Code style

Flask extension for integration of the awesome pydantic package with Flask.

Installation

python3 -m pip install Flask-Pydantic

Basics

URL query and body parameters

validate decorator validates query and body request parameters and makes them accessible two ways:

  1. Using validate arguments, via flask's request variable
parameter type request attribute name
query query_params
body body_params
  1. Using the decorated function argument parameters type hints

URL path parameter

If you use annotated path URL path parameters as follows

@app.route("/users/", methods=["GET"])
@validate()
def get_user(user_id: str):
    pass

flask_pydantic will parse and validate user_id variable in the same manner as for body and query parameters.


Additional validate arguments

  • Success response status code can be modified via on_success_status parameter of validate decorator.
  • response_many parameter set to True enables serialization of multiple models (route function should therefore return iterable of models).
  • request_body_many parameter set to False analogically enables serialization of multiple models inside of the root level of request body. If the request body doesn't contain an array of objects 400 response is returned,
  • If validation fails, 400 response is returned with failure explanation.

For more details see in-code docstring or example app.

Usage

Example 1: Query parameters only

Simply use validate decorator on route function.

Be aware that @app.route decorator must precede @validate (i. e. @validate must be closer to the function declaration).

from typing import Optional
from flask import Flask, request
from pydantic import BaseModel

from flask_pydantic import validate

app = Flask("flask_pydantic_app")

class QueryModel(BaseModel):
  age: int

class ResponseModel(BaseModel):
  id: int
  age: int
  name: str
  nickname: Optional[str]

# Example 1: query parameters only
@app.route("/", methods=["GET"])
@validate()
def get(query: QueryModel):
  age = query.age
  return ResponseModel(
    age=age,
    id=0, name="abc", nickname="123"
    )
See the full example app here
  • age query parameter is a required int
    • curl --location --request GET 'http://127.0.0.1:5000/'
    • if none is provided the response contains:
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "field required",
              "type": "value_error.missing"
            }
          ]
        }
      }
    • for incompatible type (e. g. string /?age=not_a_number)
    • curl --location --request GET 'http://127.0.0.1:5000/?age=abc'
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "value is not a valid integer",
              "type": "type_error.integer"
            }
          ]
        }
      }
  • likewise for body parameters
  • example call with valid parameters: curl --location --request GET 'http://127.0.0.1:5000/?age=20'

-> {"id": 0, "age": 20, "name": "abc", "nickname": "123"}

Example 2: URL path parameter

@app.route("/character//", methods=["GET"])
@validate()
def get_character(character_id: int):
    characters = [
        ResponseModel(id=1, age=95, name="Geralt", nickname="White Wolf"),
        ResponseModel(id=2, age=45, name="Triss Merigold", nickname="sorceress"),
        ResponseModel(id=3, age=42, name="Julian Alfred Pankratz", nickname="Jaskier"),
        ResponseModel(id=4, age=101, name="Yennefer", nickname="Yenn"),
    ]
    try:
        return characters[character_id]
    except IndexError:
        return {"error": "Not found"}, 400

Example 3: Request body only

class RequestBodyModel(BaseModel):
  name: str
  nickname: Optional[str]

# Example2: request body only
@app.route("/", methods=["POST"])
@validate()
def post(body: RequestBodyModel): 
  name = body.name
  nickname = body.nickname
  return ResponseModel(
    name=name, nickname=nickname,id=0, age=1000
    )
See the full example app here

Example 4: BOTH query paramaters and request body

# Example 3: both query paramters and request body
@app.route("/both", methods=["POST"])
@validate()
def get_and_post(body: RequestBodyModel,query: QueryModel):
  name = body.name # From request body
  nickname = body.nickname # From request body
  age = query.age # from query parameters
  return ResponseModel(
    age=age, name=name, nickname=nickname,
    id=0
  )
See the full example app here

Modify response status code

The default success status code is 200. It can be modified in two ways

  • in return statement
# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel)
def post():
    return ResponseModel(
            id=id_,
            age=request.query_params.age,
            name=request.body_params.name,
            nickname=request.body_params.nickname,
        ), 201
  • in validate decorator
@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel, on_success_status=201)
def post():
    ...

Status code in case of validation error can be modified using FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE flask configuration variable.

Using the decorated function kwargs

Instead of passing body and query to validate, it is possible to directly defined them by using type hinting in the decorated function.

# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate()
def post(body: BodyModel, query: QueryModel):
    return ResponseModel(
            id=id_,
            age=query.age,
            name=body.name,
            nickname=body.nickname,
        )

This way, the parsed data will be directly available in body and query. Furthermore, your IDE will be able to correctly type them.

Model aliases

Pydantic's alias feature is natively supported for query and body models. To use aliases in response modify response model

def modify_key(text: str) -> str:
    # do whatever you want with model keys
    return text


class MyModel(BaseModel):
    ...
    class Config:
        alias_generator = modify_key
        allow_population_by_field_name = True

and set response_by_alias=True in validate decorator

@app.route(...)
@validate(response_by_alias=True)
def my_route():
    ...
    return MyModel(...)

Example app

For more complete examples see example application.

Configuration

The behaviour can be configured using flask's application config FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE - response status code after validation error (defaults to 400)

Contributing

Feature requests and pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

  • clone repository
    git clone https://github.com/bauerji/flask_pydantic.git
    cd flask_pydantic
  • create virtual environment and activate it
    python3 -m venv venv
    source venv/bin/activate
  • install development requirements
    python3 -m pip install -r requirements/test.pip
  • checkout new branch and make your desired changes (don't forget to update tests)
    git checkout -b <your_branch_name>
  • run tests
    python3 -m pytest
  • if tests fails on Black tests, make sure You have your code compliant with style of Black formatter
  • push your changes and create a pull request to master branch

TODOs:

  • header request parameters
  • cookie request parameters
Simple example of FastAPI + Celery + Triton for benchmarking

You can see the previous work from: https://github.com/Curt-Park/producer-consumer-fastapi-celery https://github.com/Curt-Park/triton-inference-server

Jinwoo Park (Curt) 37 Dec 29, 2022
A fast and durable Pub/Sub channel over Websockets. FastAPI + WebSockets + PubSub == ⚡ 💪 ❤️

⚡ 🗞️ FastAPI Websocket Pub/Sub A fast and durable Pub/Sub channel over Websockets. The easiest way to create a live publish / subscribe multi-cast ov

8 Dec 06, 2022
OpenAPI for Todolist RESTful API

swagger-client OpenAPI for Todolist RESTful API This Python package is automatically generated by the Swagger Codegen project: API version: 1 Package

Iko Afianando 1 Dec 19, 2021
Opinionated set of utilities on top of FastAPI

FastAPI Contrib Opinionated set of utilities on top of FastAPI Free software: MIT license Documentation: https://fastapi-contrib.readthedocs.io. Featu

identix.one 543 Jan 05, 2023
A request rate limiter for fastapi

fastapi-limiter Introduction FastAPI-Limiter is a rate limiting tool for fastapi routes. Requirements redis Install Just install from pypi pip insta

long2ice 200 Jan 08, 2023
Fastapi-ml-template - Fastapi ml template with python

FastAPI ML Template Run Web API Local $ sh run.sh # poetry run uvicorn app.mai

Yuki Okuda 29 Nov 20, 2022
Minecraft biome tile server writing on Python using FastAPI

Blocktile Minecraft biome tile server writing on Python using FastAPI Usage https://blocktile.herokuapp.com/overworld/{seed}/{zoom}/{col}/{row}.png s

Vladimir 2 Aug 31, 2022
A set of demo of deploying a Machine Learning Model in production using various methods

Machine Learning Model in Production This git is for those who have concern about serving your machine learning model to production. Overview The tuto

Vo Van Tu 53 Sep 14, 2022
Full stack, modern web application generator. Using FastAPI, PostgreSQL as database, Docker, automatic HTTPS and more.

Full Stack FastAPI and PostgreSQL - Base Project Generator Generate a backend and frontend stack using Python, including interactive API documentation

Sebastián Ramírez 10.8k Jan 08, 2023
京东图片点击验证码识别

京东图片验证码识别 本项目是@yqchilde 大佬的 JDMemberCloseAccount 识别图形验证码(#45)思路验证,若你也有思路可以提交Issue和PR也可以在 @yqchilde 的 TG群 找到我 声明 本脚本只是为了学习研究使用 本脚本除了采集处理验证码图片没有其他任何功能,也

AntonVanke 37 Dec 22, 2022
Middleware for Starlette that allows you to store and access the context data of a request. Can be used with logging so logs automatically use request headers such as x-request-id or x-correlation-id.

starlette context Middleware for Starlette that allows you to store and access the context data of a request. Can be used with logging so logs automat

Tomasz Wójcik 300 Dec 26, 2022
Flood Detection with Google Earth Engine

ee-fastapi: Flood Detection System A ee-fastapi is a simple FastAPI web application for performing flood detection using Google Earth Engine in the ba

Cesar Aybar 69 Jan 06, 2023
Cookiecutter template for FastAPI projects using: Machine Learning, Poetry, Azure Pipelines and Pytests

cookiecutter-fastapi In order to create a template to FastAPI projects. 🚀 Important To use this project you don't need fork it. Just run cookiecutter

Arthur Henrique 225 Dec 28, 2022
fastapi-admin2 is an upgraded fastapi-admin, that supports ORM dialects, true Dependency Injection and extendability

FastAPI2 Admin Introduction fastapi-admin2 is an upgraded fastapi-admin, that supports ORM dialects, true Dependency Injection and extendability. Now

Glib 14 Dec 05, 2022
FastAPI Server Session is a dependency-based extension for FastAPI that adds support for server-sided session management

FastAPI Server-sided Session FastAPI Server Session is a dependency-based extension for FastAPI that adds support for server-sided session management.

DevGuyAhnaf 5 Dec 23, 2022
Turns your Python functions into microservices with web API, interactive GUI, and more.

Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and

Machine Learning Tooling 2.8k Jan 04, 2023
An alternative implement of Imjad API | Imjad API 的开源替代

HibiAPI An alternative implement of Imjad API. Imjad API 的开源替代. 前言 由于Imjad API这是什么?使用人数过多, 致使调用超出限制, 所以本人希望提供一个开源替代来供社区进行自由的部署和使用, 从而减轻一部分该API的使用压力 优势

Mix Technology 450 Dec 29, 2022
✨️🐍 SPARQL endpoint built with RDFLib to serve machine learning models, or any other logic implemented in Python

✨ SPARQL endpoint for RDFLib rdflib-endpoint is a SPARQL endpoint based on a RDFLib Graph to easily serve machine learning models, or any other logic

Vincent Emonet 27 Dec 19, 2022
Signalling for FastAPI.

fastapi-signals Signalling for FastAPI.

Henshal B 7 May 04, 2022
FastAPI CRUD template using Deta Base

Deta Base FastAPI CRUD FastAPI CRUD template using Deta Base Setup Install the requirements for the CRUD: pip3 install -r requirements.txt Add your D

Sebastian Ponce 2 Dec 15, 2021