A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Overview

Attention Walk

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018).

Abstract

Graph embedding methods represent nodes in a continuous vector space, preserving different types of relational information from the graph. There are many hyper-parameters to these methods (e.g. the length of a random walk) which have to be manually tuned for every graph. In this paper, we replace previously fixed hyper-parameters with trainable ones that we automatically learn via backpropagation. In particular, we propose a novel attention model on the power series of the transition matrix, which guides the random walk to optimize an upstream objective. Unlike previous approaches to attention models, the method that we propose utilizes attention parameters exclusively on the data itself (e.g. on the random walk), and are not used by the model for inference. We experiment on link prediction tasks, as we aim to produce embeddings that best-preserve the graph structure, generalizing to unseen information. We improve state-of-the-art results on a comprehensive suite of real-world graph datasets including social, collaboration, and biological networks, where we observe that our graph attention model can reduce the error by up to 20%-40%. We show that our automatically-learned attention parameters can vary significantly per graph, and correspond to the optimal choice of hyper-parameter if we manually tune existing methods.

This repository provides an implementation of Attention Walk as described in the paper:

Watch Your Step: Learning Node Embeddings via Graph Attention. Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, Alexander A. Alemi. NIPS, 2018. [Paper]

The original Tensorflow implementation is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torchvision       0.3.0

Datasets

The code takes an input graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. Sample graphs for the `Twitch Brasilians` and `Wikipedia Chameleons` are included in the `input/` directory.

### Options

Learning of the embedding is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --edge-path         STR   Input graph path.     Default is `input/chameleon_edges.csv`.
  --embedding-path    STR   Embedding path.       Default is `output/chameleon_AW_embedding.csv`.
  --attention-path    STR   Attention path.       Default is `output/chameleon_AW_attention.csv`.

Model options

  --dimensions           INT       Number of embeding dimensions.        Default is 128.
  --epochs               INT       Number of training epochs.            Default is 200.
  --window-size          INT       Skip-gram window size.                Default is 5.
  --learning-rate        FLOAT     Learning rate value.                  Default is 0.01.
  --beta                 FLOAT     Attention regularization parameter.   Default is 0.5.
  --gamma                FLOAT     Embedding regularization parameter.   Default is 0.5.
  --num-of-walks         INT       Number of walks per source node.      Default is 80.

Examples

The following commands learn a graph embedding and write the embedding to disk. The node representations are ordered by the ID.

Creating an Attention Walk embedding of the default dataset with the standard hyperparameter settings. Saving this embedding at the default path.

``` python src/main.py ```

Creating an Attention Walk embedding of the default dataset with 256 dimensions.

python src/main.py --dimensions 256

Creating an Attention Walk embedding of the default dataset with a higher window size.

python src/main.py --window-size 20

Creating an embedding of another dataset the Twitch Brasilians. Saving the outputs under custom file names.

python src/main.py --edge-path input/ptbr_edges.csv --embedding-path output/ptbr_AW_embedding.csv --attention-path output/ptbr_AW_attention.csv

License


Comments
  • Nan parameters

    Nan parameters

    Thanks for your pytorch code. I found that my parameters become Nan during training. Nan parameters include model.left_factors, model.right_factors, model.attention. All the entries of them become Nan during training. And also the loss. I'm trying to find the reason. I would appreciate it if you could give me some help or hints.

    opened by kkkkk001 9
  • Memory Error

    Memory Error

    I'm getting OOM errors even with small files. The attached file link_network.txt throws the following error:

    Adjacency matrix powers: 100%|███████████████████████████████████████████████████████| 4/4 [00:00<00:00, 108.39it/s]
    Traceback (most recent call last):
      File "src\main.py", line 79, in <module>
        main()
      File "src\main.py", line 74, in main
        model = AttentionWalkTrainer(args)
      File "E:\AttentionWalk\src\attentionwalk.py", line 70, in __init__
        self.initialize_model_and_features()
      File "E:\AttentionWalk\src\attentionwalk.py", line 76, in initialize_model_and_features
        self.target_tensor = feature_calculator(self.args, self.graph)
      File "E:\AttentionWalk\src\utils.py", line 53, in feature_calculator
        target_matrices = np.array(target_matrices)
    MemoryError
    

    I guess this is due to the large indices of the nodes. Any workarounds for this?

    opened by davidlenz 2
  • modified normalized_adjacency_matrix calculation

    modified normalized_adjacency_matrix calculation

    As mentioned in this issue: https://github.com/benedekrozemberczki/AttentionWalk/issues/9

    Added normalization into calculation, able to prevent unbalanced loss and prevent loss_on_mat to be extreme big while node count of data is big.

    opened by neilctwu 1
  • miscalculations of normalized adjacency matrix

    miscalculations of normalized adjacency matrix

    Thanks for sharing this awesome repo.

    The issue is I found that loss_on_target will become extreme big while training from the original code, and I think is due to the miscalculation of normalized_adjacency_matrix.

    From your original code, normalized_adjacency_matrix is been calculated by:

    normalized_adjacency_matrix = degs.dot(adjacency_matrix)
    

    However while the matrix hasn't been normalize but simply multiple by degree of nodes. I think the part of normalized_adjacency_matrix should be modified like its original definition:

      normalized_adjacency_matrix = degs.power(-1/2)\
                                        .dot(adjacency_matrix)\
                                        .dot(degs.power(-1/2))
    

    It'll turn out to be more reasonable loss shown below: image

    Am I understand it correctly?

    opened by neilctwu 1
  • problem with being killed

    problem with being killed

    Hi, I tried to train the model with new dataset which have about 60000 nodes, but I have a problem of getting Killed suddenly. Do you have any idea why? Thanks :) image

    opened by amy-hyunji 1
  • Directed weighted graphs

    Directed weighted graphs

    Is it possible to use the code with directed and weighted graphs? The paper states the attention walk framework for unweighted graphs only, but i'd like to use it for such types of networks. Thank you for your attention.

    opened by federicoairoldi 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022