Malware Bypass Research using Reinforcement Learning

Overview

MalwareRL

Malware Bypass Research using Reinforcement Learning

Background

This is a malware manipulation environment using OpenAI's gym environments. The core idea is based on paper "Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning" (paper). I am extending the original repo because:

  1. It is no longer maintained
  2. It uses Python2 and an outdated version of LIEF
  3. I wanted to integrate new Malware gym environments and additional manipulations

Over the past three years there have been breakthrough open-source projects published in the security ML space. In particular, Ember (Endgame Malware BEnchmark for Research) (paper) and MalConv: Malware detection by eating a whole exe (paper) have provided security researchers the ability to develop sophisticated, reproducible models that emulate features/techniques found in NGAVs.

MalwareRL Gym Environment

MalwareRL exposes gym environments for both Ember and MalConv to allow researchers to develop Reinforcement Learning agents to bypass Malware Classifiers. Actions include a variety of non-breaking (e.g. binaries will still execute) modifications to the PE header, sections, imports and overlay and are listed below.

Action Space

ACTION_TABLE = {
    'modify_machine_type': 'modify_machine_type',
    'pad_overlay': 'pad_overlay',
    'append_benign_data_overlay': 'append_benign_data_overlay',
    'append_benign_binary_overlay': 'append_benign_binary_overlay',
    'add_bytes_to_section_cave': 'add_bytes_to_section_cave',
    'add_section_strings': 'add_section_strings',
    'add_section_benign_data': 'add_section_benign_data',
    'add_strings_to_overlay': 'add_strings_to_overlay',
    'add_imports': 'add_imports',
    'rename_section': 'rename_section',
    'remove_debug': 'remove_debug',
    'modify_optional_header': 'modify_optional_header',
    'modify_timestamp': 'modify_timestamp',
    'break_optional_header_checksum': 'break_optional_header_checksum',
    'upx_unpack': 'upx_unpack',
    'upx_pack': 'upx_pack'
}

Observation Space

The observation_space of the gym environments are an array representing the feature vector. For ember this is numpy.array == 2381 and malconv numpy.array == 1024**2. The MalConv gym presents an opportunity to try RL techniques to generalize learning across large State Spaces.

Agents

A baseline agent RandomAgent is provided to demonstrate how to interact w/ gym environments and expected output. This agent attempts to evade the classifier by randomly selecting an action. This process is repeated up to the length of a game (e.g. 50 mods). If the modifed binary scores below the classifier threshold we register it as an evasion. In a lot of ways the RandomAgent acts as a fuzzer trying a bunch of actions with no regard to minimizing the modifications of the resulting binary.

Additional agents will be developed and made available (both model and code) in the coming weeks.

Table 1: Evasion Rate against Ember Holdout Dataset*

gym agent evasion_rate avg_ep_len
ember RandomAgent 89.2% 8.2
malconv RandomAgent 88.5% 16.33


* 250 random samples

Setup

To get malware_rl up and running you will need the follow external dependencies:

  • LIEF
  • Ember, Malconv and SOREL-20M models. All of these then need to be placed into the malware_rl/envs/utils/ directory.

    The SOREL-20M model requires use of the aws-cli in order to get. When accessing the AWS S3 bucket, look in the sorel-20m-model/checkpoints/lightGBM folder and fish out any of the models in the seed folders. The model file will need to be renamed to sorel.model and placed into malware_rl/envs/utils alongside the other models.

  • UPX has been added to support pack/unpack modifications. Download the binary here and place in the malware_rl/envs/controls directory.
  • Benign binaries - a small set of "trusted" binaries (e.g. grabbed from base Windows installation) you can download some via MSFT website (example). Store these binaries in malware_rl/envs/controls/trusted
  • Run strings command on those binaries and save the output as .txt files in malware_rl/envs/controls/good_strings
  • Download a set of malware from VirusShare or VirusTotal. I just used a list of hashes from the Ember dataset

Note: The helper script download_deps.py can be used as a quickstart to get most of the key dependencies setup.

I used a conda env set for Python3.7:

conda create -n malware_rl python=3.7

Finally install the Python3 dependencies in the requirements.txt.

pip3 install -r requirements.txt

References

The are a bunch of good papers/blog posts on manipulating binaries to evade ML classifiers. I compiled a few that inspired portions of this project below. Also, I have inevitably left out other pertinent reseach, so if there is something that should be in here let me know in an Git Issue or hit me up on Twitter (@filar).

Papers

  • Demetrio, Luca, et al. "Efficient Black-box Optimization of Adversarial Windows Malware with Constrained Manipulations." arXiv preprint arXiv:2003.13526 (2020). (paper)
  • Demetrio, Luca, et al. "Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection." arXiv preprint arXiv:2008.07125 (2020). (paper)
  • Song, Wei, et al. "Automatic Generation of Adversarial Examples for Interpreting Malware Classifiers." arXiv preprint arXiv:2003.03100 (2020). (paper)
  • Suciu, Octavian, Scott E. Coull, and Jeffrey Johns. "Exploring adversarial examples in malware detection." 2019 IEEE Security and Privacy Workshops (SPW). IEEE, 2019. (paper)
  • Fleshman, William, et al. "Static malware detection & subterfuge: Quantifying the robustness of machine learning and current anti-virus." 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2018. (paper)
  • Pierazzi, Fabio, et al. "Intriguing properties of adversarial ML attacks in the problem space." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020. (paper/code)
  • Fang, Zhiyang, et al. "Evading anti-malware engines with deep reinforcement learning." IEEE Access 7 (2019): 48867-48879. (paper)

Blog Posts

Talks

  • 42: The answer to life the universe and everything offensive security by Will Pearce, Nick Landers (slides)
  • Bot vs. Bot: Evading Machine Learning Malware Detection by Hyrum Anderson (slides)
  • Trying to Make Meterpreter into an Adversarial Example by Andy Applebaum (slides)
Owner
Bobby Filar
Security Data Science @ Elastic
Bobby Filar
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023