Python bindings for BigML.io

Overview

BigML Python Bindings

BigML makes machine learning easy by taking care of the details required to add data-driven decisions and predictive power to your company. Unlike other machine learning services, BigML creates beautiful predictive models that can be easily understood and interacted with.

These BigML Python bindings allow you to interact with BigML.io, the API for BigML. You can use it to easily create, retrieve, list, update, and delete BigML resources (i.e., sources, datasets, models and, predictions). For additional information, see the full documentation for the Python bindings on Read the Docs.

This module is licensed under the Apache License, Version 2.0.

Support

Please report problems and bugs to our BigML.io issue tracker.

Discussions about the different bindings take place in the general BigML mailing list. Or join us in our Campfire chatroom.

Requirements

Only Python 3 versions are currently supported by these bindings. Support for Python 2.7.X ended in version 4.32.3.

The basic third-party dependencies are the requests, unidecode and requests-toolbelt bigml-chronos, numpy and scipy libraries. These libraries are automatically installed during the setup. Support for Google App Engine has been added as of version 3.0.0, using the urlfetch package instead of requests.

The bindings will also use simplejson if you happen to have it installed, but that is optional: we fall back to Python's built-in JSON libraries is simplejson is not found.

Also in order to use local Topic Model predictions, you will need to install pystemmer. Using the pip install command for this library can produce an error if your system lacks the correct developer tools to compile it. In Windows, the error message will include a link pointing to the needed Visual Studio version and in OSX you'll need to install the Xcode developer tools.

Installation

To install the latest stable release with pip

$ pip install bigml

You can also install the development version of the bindings directly from the Git repository

$ pip install -e git://github.com/bigmlcom/python.git#egg=bigml_python

Running the Tests

The test will be run using nose , that is installed on setup, and you'll need to set up your authentication via environment variables, as explained in the authentication section. Also some of the tests need other environment variables like BIGML_ORGANIZATION to test calls when used by Organization members and BIGML_EXTERNAL_CONN_HOST, BIGML_EXTERNAL_CONN_PORT, BIGML_EXTERNAL_CONN_DB, BIGML_EXTERNAL_CONN_USER, BIGML_EXTERNAL_CONN_PWD and BIGML_EXTERNAL_CONN_SOURCE in order to test external data connectors.

With that in place, you can run the test suite simply by issuing

$ python setup.py nosetests

Additionally, Tox can be used to automatically run the test suite in virtual environments for all supported Python versions. To install Tox:

$ pip install tox

Then run the tests from the top-level project directory:

$ tox

Importing the module

To import the module:

import bigml.api

Alternatively you can just import the BigML class:

from bigml.api import BigML

Authentication

All the requests to BigML.io must be authenticated using your username and API key and are always transmitted over HTTPS.

This module will look for your username and API key in the environment variables BIGML_USERNAME and BIGML_API_KEY respectively.

Unix and MacOS

You can add the following lines to your .bashrc or .bash_profile to set those variables automatically when you log in:

export BIGML_USERNAME=myusername
export BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

refer to the next chapters to know how to do that in other operating systems.

With that environment set up, connecting to BigML is a breeze:

from bigml.api import BigML
api = BigML()

Otherwise, you can initialize directly when instantiating the BigML class as follows:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291')

These credentials will allow you to manage any resource in your user environment.

In BigML a user can also work for an organization. In this case, the organization administrator should previously assign permissions for the user to access one or several particular projects in the organization. Once permissions are granted, the user can work with resources in a project according to his permission level by creating a special constructor for each project. The connection constructor in this case should include the project ID:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
            project='project/53739b98d994972da7001d4a')

If the project used in a connection object does not belong to an existing organization but is one of the projects under the user's account, all the resources created or updated with that connection will also be assigned to the specified project.

When the resource to be managed is a project itself, the connection needs to include the corresponding``organization ID``:

api = BigML('myusername', 'ae579e7e53fb9abd646a6ff8aa99d4afe83ac291',
            organization='organization/53739b98d994972da7025d4a')

Authentication on Windows

The credentials should be permanently stored in your system using

setx BIGML_USERNAME myusername
setx BIGML_API_KEY ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

Note that setx will not change the environment variables of your actual console, so you will need to open a new one to start using them.

Authentication on Jupyter Notebook

You can set the environment variables using the %env command in your cells:

%env BIGML_USERNAME=myusername
%env BIGML_API_KEY=ae579e7e53fb9abd646a6ff8aa99d4afe83ac291

Alternative domains

The main public domain for the API service is bigml.io, but there are some alternative domains, either for Virtual Private Cloud setups or the australian subdomain (au.bigml.io). You can change the remote server domain to the VPC particular one by either setting the BIGML_DOMAIN environment variable to your VPC subdomain:

export BIGML_DOMAIN=my_VPC.bigml.io

or setting it when instantiating your connection:

api = BigML(domain="my_VPC.bigml.io")

The corresponding SSL REST calls will be directed to your private domain henceforth.

You can also set up your connection to use a particular PredictServer only for predictions. In order to do so, you'll need to specify a Domain object, where you can set up the general domain name as well as the particular prediction domain name.

from bigml.domain import Domain
from bigml.api import BigML

domain_info = Domain(prediction_domain="my_prediction_server.bigml.com",
                     prediction_protocol="http")

api = BigML(domain=domain_info)

Finally, you can combine all the options and change both the general domain server, and the prediction domain server.

from bigml.domain import Domain
from bigml.api import BigML
domain_info = Domain(domain="my_VPC.bigml.io",
                     prediction_domain="my_prediction_server.bigml.com",
                     prediction_protocol="https")

api = BigML(domain=domain_info)

Some arguments for the Domain constructor are more unsual, but they can also be used to set your special service endpoints:

  • protocol (string) Protocol for the service (when different from HTTPS)
  • verify (boolean) Sets on/off the SSL verification
  • prediction_verify (boolean) Sets on/off the SSL verification for the prediction server (when different from the general SSL verification)

Note that the previously existing dev_mode flag:

api = BigML(dev_mode=True)

that caused the connection to work with the Sandbox Development Environment has been deprecated because this environment does not longer exist. The existing resources that were previously created in this environment have been moved to a special project in the now unique Production Environment, so this flag is no longer needed to work with them.

Quick Start

Imagine that you want to use this csv file containing the Iris flower dataset to predict the species of a flower whose petal length is 2.45 and whose petal width is 1.75. A preview of the dataset is shown below. It has 4 numeric fields: sepal length, sepal width, petal length, petal width and a categorical field: species. By default, BigML considers the last field in the dataset as the objective field (i.e., the field that you want to generate predictions for).

sepal length,sepal width,petal length,petal width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
...
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
...
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica

You can easily generate a prediction following these steps:

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
dataset = api.create_dataset(source)
model = api.create_model(dataset)
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45})

You can then print the prediction using the pprint method:

>>> api.pprint(prediction)
species for {"petal width": 1.75, "petal length": 2.45} is Iris-setosa

Certainly, any of the resources created in BigML can be configured using several arguments described in the API documentation. Any of these configuration arguments can be added to the create method as a dictionary in the last optional argument of the calls:

from bigml.api import BigML

api = BigML()

source_args = {"name": "my source",
     "source_parser": {"missing_tokens": ["NULL"]}}
source = api.create_source('./data/iris.csv', source_args)
dataset_args = {"name": "my dataset"}
dataset = api.create_dataset(source, dataset_args)
model_args = {"objective_field": "species"}
model = api.create_model(dataset, model_args)
prediction_args = {"name": "my prediction"}
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45},
    prediction_args)

The iris dataset has a small number of instances, and usually will be instantly created, so the api.create_ calls will probably return the finished resources outright. As BigML's API is asynchronous, in general you will need to ensure that objects are finished before using them by using api.ok.

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
api.ok(source)
dataset = api.create_dataset(source)
api.ok(dataset)
model = api.create_model(dataset)
api.ok(model)
prediction = api.create_prediction(model, \
    {"petal width": 1.75, "petal length": 2.45})

Note that the prediction call is not followed by the api.ok method. Predictions are so quick to be generated that, unlike the rest of resouces, will be generated synchronously as a finished object.

The example assumes that your objective field (the one you want to predict) is the last field in the dataset. If that's not he case, you can explicitly set the name of this field in the creation call using the objective_field argument:

from bigml.api import BigML

api = BigML()

source = api.create_source('./data/iris.csv')
api.ok(source)
dataset = api.create_dataset(source)
api.ok(dataset)
model = api.create_model(dataset, {"objective_field": "species"})
api.ok(model)
prediction = api.create_prediction(model, \
    {'sepal length': 5, 'sepal width': 2.5})

You can also generate an evaluation for the model by using:

test_source = api.create_source('./data/test_iris.csv')
api.ok(test_source)
test_dataset = api.create_dataset(test_source)
api.ok(test_dataset)
evaluation = api.create_evaluation(model, test_dataset)
api.ok(evaluation)

If you set the storage argument in the api instantiation:

api = BigML(storage='./storage')

all the generated, updated or retrieved resources will be automatically saved to the chosen directory.

Alternatively, you can use the export method to explicitly download the JSON information that describes any of your resources in BigML to a particular file:

api.export('model/5acea49a08b07e14b9001068',
           filename="my_dir/my_model.json")

This example downloads the JSON for the model and stores it in the my_dir/my_model.json file.

In the case of models that can be represented in a PMML syntax, the export method can be used to produce the corresponding PMML file.

api.export('model/5acea49a08b07e14b9001068',
           filename="my_dir/my_model.pmml",
           pmml=True)

You can also retrieve the last resource with some previously given tag:

api.export_last("foo",
                resource_type="ensemble",
                filename="my_dir/my_ensemble.json")

which selects the last ensemble that has a foo tag. This mechanism can be specially useful when retrieving retrained models that have been created with a shared unique keyword as tag.

For a descriptive overview of the steps that you will usually need to follow to model your data and obtain predictions, please see the basic Workflow sketch document. You can also check other simple examples in the following documents:

Additional Information

We've just barely scratched the surface. For additional information, see the full documentation for the Python bindings on Read the Docs. Alternatively, the same documentation can be built from a local checkout of the source by installing Sphinx ($ pip install sphinx) and then running

$ cd docs
$ make html

Then launch docs/_build/html/index.html in your browser.

How to Contribute

Please follow the next steps:

  1. Fork the project on github.com.
  2. Create a new branch.
  3. Commit changes to the new branch.
  4. Send a pull request.

For details on the underlying API, see the BigML API documentation.

Owner
BigML Inc, Machine Learning made easy
BigML Inc, Machine Learning made easy
Pyspark sam - Analyze Big Sequence Alignments with PySpark in AWS EMR

pyspark_sam This repo hosts my code for the article "Analyze Big Sequence Alignm

Sixing Huang 4 Dec 09, 2022
WordPress models and views for Django.

django-wordpress Models and views for reading a WordPress database. Compatible with WordPress version 3.5+. django-wordpress is a project of ISL and t

Jeremy Carbaugh 332 Dec 24, 2022
🚀 A fast, flexible and lightweight Discord API wrapper for Python.

Krema A fast, flexible and lightweight Discord API wrapper for Python. Installation Unikorn unikorn add kremayard krema -no-confirmation Pip pip insta

Krema 20 Sep 04, 2022
A Python Script to scan through an Instagram account to find all the followers and followings.

Instagram Followers Scan A Python Script to scan through an Instagram account to find all the followers and followings. You can also get filtered list

Nityasmit Mallick 6 Oct 27, 2022
Hack WhatsApp Account Easily(Android)

X-Whatsapp Hack WhatsApp Account Easily(Android) HOW TO RUN 👇 (Termux) pkg update && pkg upgrade pkg install python pkg install git git clone https:/

KiLL3R_xRO 72 Dec 21, 2022
Space Bot, a Discord bot built for HackerSpace Club of PES University

Space Bot Space Bot, a Discord bot built for HackerSpace Club of PES University What can Space Bot do? Space Bot allows you to lookup any mentor or to

HackerSpace @PESU 7 Oct 23, 2022
Free Game Download Client

XGames Free Game Download Client В проекте была использована библиотека igruha а также PyQt5 WARN ⚠️ Возможно потребуется скачать и установить vc_redi

LORD_CODE 3 Jun 25, 2022
Python SDK for LUSID by FINBOURNE, a bi-temporal investment management data platform with portfolio accounting capabilities.

LUSID® Python SDK This is the Python SDK for LUSID by FINBOURNE, a bi-temporal investment management data platform with portfolio accounting capabilit

FINBOURNE 6 Dec 24, 2022
just another discord bot

boredbot just another discord bot made to learn python this bots main function is to cache teams meeting links and send them right before the classes

macky 3 Sep 03, 2021
Python client for Arista eAPI

Arista eAPI Python Library The Python library for Arista's eAPI command API implementation provides a client API work using eAPI and communicating wit

Arista Networks EOS+ 124 Nov 23, 2022
Python bindings for Alexa Web Information Service (AWIS) API

Attention! This package is no longer maintained. See this ticket for more info. Wraps Alexa Web Information Service. Usage Making UrlInfo requests: ap

Atamert Ölçgen 51 Feb 12, 2022
Telegram Bot to store Posts and Documents and it can Access by Special Links.

File-sharing-Bot Telegram Bot to store Posts and Documents and it can Access by Special Links. I Guess This Will Be Usefull For Many People..... 😇 .

Code X Botz 1.2k Jan 08, 2023
A repository of publicly verifiable token Sale contracts

Token-Sale-Plutus-Contract A repository of publicly verifiable token sale and royalty contracts. This will be the storage solution since it is easily

Logical Mechanism 29 Aug 18, 2022
Generate visualizations of GitHub user and repository statistics using GitHubActions

GitHub Stats Visualization Generate visualizations of GitHub user and repository

Jun Shi 3 Dec 15, 2022
THERE IS AN IMPOSTER AMONG US. VOTE HIM OUT BEFORE HE [ R E D A C T E D ].

🛡️ Guardian There is an impostor among us. Can you help us find out who it is? ⚙️ Installation and Usage Make sure to install Tesseract-OCR before ru

Catus Magnus 1 Jan 06, 2022
VoiceMaster-Discord-Bot - Fork from original Discord bot with max channel limit, staff role and more

VoiceMaster VoiceMaster is a discord bot created to change the way servers work,

2 Feb 28, 2022
This is a story bot, that will scrape stories from r/stories subreddit and convert it into an Audio File.

Introduction This is a story bot, that will scrape stories from r/stories subreddit and convert it into an Audio File. Installation pip install -r req

Yasho 11 Jun 30, 2022
Morpheus is a telegram bot that helps to simplify the process of making custom telegram stickers.

😎 Morpheus is a telegram bot that helps to simplify the process of making custom telegram stickers. As you may know, Telegram's official Sti

Abhijith K S 1 Dec 14, 2022
Telegram Bot For Screenshot Generation.

Screenshotit_bot Telegram Bot For Screenshot Generation. Description An attempt to implement the screenshot generation of telegram files without downl

1 Nov 06, 2021
A bot for the [email protected] Discord server.

KittyBot - a sentient Discord bot! Key Notes An open-source, community-powered bot for the [email 

Ollie 11 Dec 06, 2022