Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Overview

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective

Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Installing

Standard pip instal [Recommended]

TODO

If you are going to use a gpu the do this first before continuing (or check the offical website: https://pytorch.org/get-started/locally/):

pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Otherwise, just doing the follwoing should work.

pip install automl

If that worked, then you should be able to import is as follows:

import automl

Manual installation [Development]

To use library first get the code from this repo (e.g. fork it on github):

git clone [email protected]/brando90/automl-meta-learning.git

Then install it in development mode in your python env with python >=3.9 (read modules_in_python.md to learn about python envs in uutils). E.g. create your env with conda:

conda create -n metalearning python=3.9
conda activate metalearning

Then install it in edibable mode and all it's depedencies with pip in the currently activated conda environment:

pip install -e ~/automl-meta-learning/automl-proj-src/

since the depedencies have not been written install them:

pip install -e ~/ultimate-utils/ultimate-utils-proj-src

then test as followsing:

python -c "import uutils; print(uutils); uutils.hello()"
python -c "import meta_learning; print(meta_learning)"
python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

output should be something like this:

hello from uutils __init__.py in: (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)" (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()" hello from torch_uu __init__.py in: ">
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import uutils; print(uutils); uutils.hello()"

       
        

hello from uutils __init__.py in:

        
         

(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)"

         
          
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

          
           

hello from torch_uu __init__.py in:

            
           
          
         
        
       

Reproducing Results

TODO

Citation

B. Miranda, Y.Wang, O. Koyejo.
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective. 
(Planned Release Date December 2021).
https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023