Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Overview

Call of Duty World League: Search & Destroy Outcome Predictions

CWL Image

Growing up as an avid Call of Duty player, I was always curious about what factors led to a team winning or losing a match. Was it strictly based on the number of kills each player obtained? Was it who played the objective more? Or was it something different? Finally, after years of waiting, I decided that it was time to find my answers. Coupling my love for Call of Duty and my passion for data science, I began to investigate predicting the outcome of Search & Destroy games from the Call of Duty World League's 2018 and 2019 seasons.

Utilizing Python, I created a Logistic Regression binary classification model that provided insight into the significant factors that led teams to win Search and Destroy matches. Did you know that every time a player has exactly two kills in around a team's odds of winning increase by 59%? Or that every time a team defuses the bomb, their odds of winning the match increase by 54%? What about when someone on the team commits suicide? The team's odds of winning the match decreased by a whopping 43%!

I also built an XGBoost and a Random Forest model to see how accurately I could predict a Search & Destroy match outcome. The XGBoost model was ~89% accurate when predicting Search & Destroy match outcomes on test data! This model found that one of the least important variables for predicting a team's win or loss is if the team had a sneak defuse at any point during the match. Although sneak defuses are beneficial to a team's success, it would be more impactful if players removed all enemies from the round before defusing the bomb.

Project Goals

  1. Learn about essential factors that play into a team's outcome for Search & Destroy matches
  2. See how well I can predict a team's wins and losses for Search & Destroy matches

What did I do?

I used data from 17 different CWL tournaments spanning two years. If you are curious, you can find each dataset within this Activision repository hosted here. I excluded the data from the 2017 CWL Championships tournament because this set does not have all the Search & Destroy variables that the other datasets have. The final dataset had 3,128 observations with 30 variables. In total, there are 1,564 Search & Destroy matches in this dataset. All variables are continuous; there were no categorical variables within the final data used for modeling besides the binary indicator for the match's outcome.

To reach the first goal of this project, I created a Logistic Regression model to learn about the crucial factors that can either help a team win or pull a team toward a loss. To reach the second goal of this project, I elected to use both Random Forest and XGBoost models for classification to try and find the best model possible at predicting match outcomes.

How did I do it?

Logistic Regression

After joining the data, I first needed to group the observations by each match and team, then I filtered for only Search & Destroy games. That way, we have observations for both wins and losses of only Search & Destroy matches. I used a set of 14 variables for the model development process. The variables are as follows: Deaths, Assists, Headshots, Suicides, Hits, Bomb Plants, Bomb Defuses, Bomb Sneak Defuses, Snd Firstbloods, Snd 2-kill round, Snd 3-kill round, Snd 4-kill round, 2-piece, & 3-piece. If you are curious, you can find an explanation of each variable in the entire dataset in the Activision repository linked above.

Since we are using these models to classify wins and losses correctly, I elected to use the Area Under the Receiver Operating Characteristic (AUROC) curve as a metric for determining the best model. I used AUROC because of its balance between the True Positive Rate and the False Positive Rate. I found that the Logistic Regression model with the highest AUROC value on training data had the following variables: Assists, Headshots, Suicides, Defuses, Snd 2-kill round, Snd 3-kill round, & Snd 4-kill round. This model was then used to predict test data and produced the following AUROC curve:

Logistic AUROC Graph

It is worth noting that this model was 75% accurate when predicting wins and losses on test data. Overall, I expected this model to perform worse due to the small number of variables used. Still, it seems as if these variables do an excellent job at deciphering the wins and losses in Search & Destroy matches. You can find the actual values in the confusion matrix built by this model here.

Random Forest & XGBoost

For the second goal of this project, I used both Random Forest and XGBoost classification models to see just how well we could predict the outcome of a match. Neither of these algorithms has the same assumptions as Logistic Regression, so I used the complete set of 14 variables for each technique. Without optimizing hyperparameters, I first built both models to have a baseline model for both algorithms. After this, I decided to use a grid search on the hyperparameters in each model to find the best possible tune for the data.

I found that the optimized XGBoost model had a higher AUROC value than the optimized Random Forest model on training data, so I used the XGBoost model to predict the test data. This model produced the following AUROC curve:

XGBoost AUROC Graph

As expected, this model did much better than the Logistic Regression for predicting match outcomes! This model is ~89% accurate when predicting wins and losses on test data. You can find the confusion matrix for this model here.

What did I find?

From the Logistic Regression model, I found that a team's odds of winning the entire match increase by ~5% every time someone gets a kill with a headshot and ~54% every time the bomb gets defused. A team's odds of winning also increase by 59% every time a player has exactly two kills in a round, ~115% every time a player has precisely three kills in a round, and ~121% every time a player has precisely four kills in around. I also found that a team's odds of winning the entire match decrease by 43% every time a player commits suicide and (oddly enough) 0.34% every time a player receives an assist.

I recommend that professional COD teams looking to up their Search & Destroy win percentage need to find and recruit players with a high amount of bomb defuses and many headshots in Search & Destroy games. If I were a coach, I would be looking to grab Arcitys, Zer0, Clayster, Rated, & Silly. These are five players who have a high count of headshots and defuses in Search & Destroy matches.

If you are curious to learn about the essential variables in the XGBoost model, head over here!

Owner
Brett Vogelsang
M.S. Candidate at the Institute for Advanced Analytics at NC State University.
Brett Vogelsang
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021