[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Overview

Mirror-BERT

Code repo for the EMNLP 2021 paper:
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
by Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel Collier.

Mirror-BERT is an unsupervised contrastive learning method that converts pretrained language models (PLMs) into universal text encoders. It takes a PLM and a txt file containing raw text as input, and output a strong text embedding model, in just 20-30 seconds. It works well for not only sentence, but also word and phrase representation learning.

Hugginface pretrained models

Sentence enocders:

model STS avg.
baseline: sentence-bert (supervised) 74.89
mirror-bert-base-uncased-sentence 74.51
mirror-roberta-base-sentence 75.08
mirror-bert-base-uncased-sentence-drophead 75.16
mirror-roberta-base-sentence-drophead 76.67

Word encoder:

model Multi-SimLex (ENG)
baseline: fasttext 52.80
mirror-bert-base-uncased-word 55.60

(Note that the released models would not replicate the exact numbers in the paper, since the reported numbers in the paper are average of three runs.)

Train

For training sentence representations:

>> ./mirror_scripts/mirror_sentence_bert.sh 0,1

where 0,1 are GPU indices. This script should complete in 20-30 seconds on two NVIDIA 2080Ti/3090 GPUs. If you encounter out-of-memory error, consider reducing max_length in the script. Scripts for replicating other models are availible in mirror_scripts/.

Custom data: For training with your custom corpus, simply set --train_dir in the script to your own txt file (one sentence per line). When you do have raw sentences from your target domain, we recommend you always use the in-domain data for optimal performance. E.g., if you aim to create a conversational encoder, sample 10k utterances to train your model!

Supervised training: Organise your training data in the format of text1||text2 and store them one pair per line in a txt file. Then turn on the --pairwise option. text1 and text2 will be regarded as a positive pair in contrastive learning. You can be creative in finding such training pairs and it would be the best if they are from your application domain. E.g., to build an e-commerce QA encoder, the question||answer pairs from the Amazon quesrion-answer dataset could work quite well. Example training script: mirror_scripts/mirror_sentence_roberta_supervised_amazon_qa.sh. Note that when tuned on your in-domain data, you shouldn't expect the model to be good at STS. Instead, the models need to be evaluated on your in-domain task.

Word-level training: Use mirror_scripts/mirror_word_bert.sh.

Encode

It's easy to compute your own sentence embeddings:

from src.mirror_bert import MirrorBERT

model_name = "cambridgeltl/mirror-roberta-base-sentence-drophead"
mirror_bert = MirrorBERT()
mirror_bert.load_model(path=model_name, use_cuda=True)

embeddings = mirror_bert.get_embeddings([
    "I transform pre-trained language models into universal text encoders.",
], agg_mode="cls")
print (embeddings.shape)

Evaluate

Evaluate sentence representations:

>> python evaluation/eval.py \
	--model_dir "cambridgeltl/mirror-roberta-base-sentence-drophead" \
	--agg_mode "cls" \
	--dataset sent_all

Evaluate word representations:

>> python evaluation/eval.py \
	--model_dir "cambridgeltl/mirror-bert-base-uncased-word" \
	--agg_mode "cls" \
	--dataset multisimlex_ENG

To test models on other languages, replace ENG to your custom languages. See here for all supported languages on Multi-SimLex.

Citation

@inproceedings{liu2021fast,
  title={Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders},
  author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel},
  booktitle={EMNLP 2021},
  year={2021}
}
Owner
Cambridge Language Technology Lab
Cambridge Language Technology Lab
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
Text classification is one of the popular tasks in NLP that allows a program to classify free-text documents based on pre-defined classes.

Deep-Learning-for-Text-Document-Classification Text classification is one of the popular tasks in NLP that allows a program to classify free-text docu

Happy N. Monday 2 Mar 17, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022