Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Overview

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

teaser

Introduction

This is the official repository for the PyTorch implementation of "Canonical Capsules: Unsupervised Capsules in Canonical Pose" by Weiwei Sun*, Andrea Tagliasacchi*, Boyang Deng, Sara Sabour, Soroosh Yazdani, Geoffrey Hinton, Kwang Moo Yi.

Download links

Citation

⚠️ If you use this source core or data in your research (in any shape or format), we require you to cite our paper as:

@conference{sun2020canonical,
   title={Canonical Capsules: Unsupervised Capsules in Canonical Pose},
   author={Weiwei Sun and Andrea Tagliasacchi and Boyang Deng and 
           Sara Sabour and Soroosh Yazdani and Geoffrey Hinton and
           Kwang Moo Yi},
   booktitle={Neural Information Processing Systems},
   year={2021}
}

Requirements

Please install dependencies with the provided environment.yml:

conda env create -f environment.yml

Datasets

  • We use the ShapeNet dataset as in AtlasNetV2: download the data from AtlasNetV2's official repo and convert the downloaded data into h5 files with the provided script (i.e., data_utils/ShapeNetLoader.py).

  • For faster experimentation, please use our 2D planes dataset, which we generated from ShapeNet (please cite both our paper, as well as ShapeNet if you use this dataset).

Training/testing (2D)

To train the model on 2D planes (training of network takes only 50 epochs, and one epoch takes approximately 2.5 minutes on an NVIDIA GTX 1080 Ti):

./main.py --log_dir=plane_dim2 --indim=2 --scheduler=5

To visualize the decompostion and reconstruction:

./main.py --save_dir=gifs_plane2d --indim=2 --scheduler=5 --mode=vis --pt_file=logs/plane_dim2/checkpoint.pth

Training/testing (3D)

To train the model on the 3D dataset:

./main.py --log_dir=plane_dim3 --indim=3 --cat_id=-1

We test the model with:

./main.py --log_dir=plane_dim3 --indim=3 --cat_id=-1 --mode=test

Note that the option cat_id indicates the category id to be used to load the corresponding h5 files (this look-up table):

id category
-1 all
0 bench
1 cabinet
2 car
3 cellphone
4 chair
5 couch
6 firearm
7 lamp
8 monitor
9 plane
10 speaker
11 table
12 watercraft

Pre-trained models (3D)

We release the 3D pretrained models for both single categy (airplanes), as well as multi-category (all 13 classes).

Classification

To use our classification script:

python classification.py --data_dir=/path/to/saved/features --feature_type=caca --method_type=svm --use_kpts
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022