Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

Related tags

Deep Learningxlm-t
Overview

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter.

XLM-T - A Multilingual Language Model Toolkit for Twitter

As explained in the reference paper, we make start from XLM-Roberta base and continue pre-training on a large corpus of Twitter in multiple languages. This masked language model, which we named twitter-xlm-roberta-base in the 🤗 Huggingface hub, can be downloaded from here.

Note: This Twitter-specific pretrained LM was pretrained following a similar strategy to its English-only counterpart, which was introduced as part of the TweetEval framework, and available here.

We also provide task-specific models based on the Adapter technique, fine-tuned for cross-lingual sentiment analysis (See #2):

1 - Code

We include code with various functionalities to complement this release. We provide examples for, among others, feature extraction and adapter-based inference with language models in this notebook. Also with examples for training and evaluating language models on multiple tweet classification tasks, compatible with UMSAB (see #2) and TweetEval datasets.

Perform inference with Huggingface's pipelines

Using Huggingface's pipelines, obtaining predictions is as easy as:

from transformers import pipeline
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Huggingface es lo mejor! Awesome library 🤗😎")
[{'label': 'Positive', 'score': 0.9343640804290771}]

Fine-tune xlm-t with adapters

You can fine-tune an adapter built on top of your language model of choice by running the src/adapter_finetuning.py script, for example:

python3 src/adapter_finetuning.py --language spanish --model cardfiffnlp/twitter-xlm-roberta-base --seed 1 --lr 0.0001 --max_epochs 20

Notebooks

For quick prototyping, you can direclty use the Colab notebooks we provide below:

Notebook Description Colab Link
01: Playgroud examples Minimal start examples Open In Colab
02: Extract embeddings Extract embeddings from tweets Open In Colab
03: Sentiment prediction Predict sentiment Open In Colab
04: Fine-tuning Fine-tune a model on custom data Open In Colab

2 - UMSAB, the Unified Multilingual Sentiment Analysis Benchmark

As part of our framework, we also release a unified benchmark for cross-lingual sentiment analysis for eight different languages. All datasets are framed as tweet classification with three labels (positive, negative and neutral). The languages included in the benchmark, as well as the datasets they are based on, are: Arabic (SemEval-2017, Rosenthal et al. 2017), English (SemEval-17, Rosenthal et al. 2017), French (Deft-2017, Benamara et al. 2017), German (SB-10K, Cieliebak et al. 2017), Hindi (SAIL 2015, Patra et al. 2015), Italian (Sentipolc-2016, Barbieri et al. 2016), Portuguese (SentiBR, Brum and Nunes, 2017) and Spanish (Intertass 2017, Díaz Galiano et al. 2018). The format for each dataset follows that of TweetEval with one line per tweet and label per line.

UMSAB Results / Leaderboard

The following results (Macro F1 reported) correspond to XLM-R (Conneau et al. 2020) and XLM-Tw, the same model retrained on Twitter as explained in the reference paper. The two settings are monolingual (trained and tested in the same language) and multilingual (considering all languages for training). Check the reference paper for more details on the setting and the metrics.

FT Mono XLM-R Mono XLM-Tw Mono XLM-R Multi XLM-Tw Multi
Arabic 46.0 63.6 67.7 64.3 66.9
English 50.9 68.2 66.9 68.5 70.6
French 54.8 72.0 68.2 70.5 71.2
German 59.6 73.6 76.1 72.8 77.3
Hindi 37.1 36.6 40.3 53.4 56.4
Italian 54.7 71.5 70.9 68.6 69.1
Portuguese 55.1 67.1 76.0 69.8 75.4
Spanish 50.1 65.9 68.5 66.0 67.9
All lang. 51.0 64.8 66.8 66.8 69.4

If you would like to have your results added to the leaderboard you can either submit a pull request or send an email to any of the paper authors with results and the predictions of your model. Please also submit a reference to a paper describing your approach.

Evaluating your system

For evaluating your system according to Macro-F1, you simply need an individual prediction file for each of the languages. The format of the predictions file should be the same as the output examples in the predictions folder (one output label per line as per the original test file) and the files should be named language.txt (e.g. arabic.txt or all.txt if evaluating all languages at once). The predictions included as an example in this repo correspond to xlm-t trained and evaluated on all languages (All lang.).

Example usage

python src/evaluation_script.py

The script takes as input a set of test labels and the predictions from the "predictions" folder by default, but you can set this to suit your needs as optional arguments.

Optional arguments

Three optional arguments can be modified:

--gold_path: Path to gold datasets. Default: ./data/sentiment

--predictions_path: Path to predictions directory. Default: ./predictions/sentiment

--language: Language to evaluate (arabic, english ... or all). Default: all

Evaluation script sample usage from the terminal with parameters:

python src/evaluation_script.py --gold_path ./data/sentiment --predictions_path ./predictions/sentiment --language arabic

(this script would output the results for the Arabic dataset only)

Reference paper

If you use this repository in your research, please use the following bib entry to cite the reference paper.

@inproceedings{barbieri2021xlmtwitter,
  title={{A Multilingual Language Model Toolkit for Twitter}},
  author={Barbieri, Francesco and Espinosa-Anke, Luis and Camacho-Collados, Jose},
  booktitle={arXiv preprint arXiv:2104.12250},
  year={2021}
}

If using UMSAB, please also cite their corresponding datasets.

License

This repository is released open-source but but restrictions may apply to individual datasets (which are derived from existing data) or Twitter (main data source). We refer users to the original licenses accompanying each dataset and Twitter regulations.

Owner
Cardiff NLP
Cardiff NLP
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022