Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

Overview

RGBT Crowd Counting

Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [PDF]

Download RGBT-CC Dataset & Models: [Dropbox][BaiduYun (PW: RGBT)]

Our framework can be implemented with various backbone networks. You can refer to this page for implementing BL+IADM. Moreover, the proposed framework can also be applied to RGBD crowd counting and the implementation of CSRNet+IADM is available.

If you use this code and benchmark for your research, please cite our work:

@inproceedings{liu2021cross,
  title={Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting},
  author={Liu, Lingbo and Chen, Jiaqi and Wu, Hefeng and Li, Guanbin and Li, Chenglong and Lin, Liang},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Introduction

Crowd counting is a fundamental yet challenging task, which desires rich information to generate pixel-wise crowd density maps. In this work, we find that incorporating optical and thermal information can greatly help to recognize pedestrians. To promote future researches in this field, we introduce a large-scale RGBT Crowd Counting (RGBT-CC) benchmark, which contains 2,030 pairs of RGB-thermal images with 138,389 annotated people. Furthermore, to facilitate the multimodal crowd counting, we propose a cross-modal collaborative representation learning framework, which consists of multiple modality-specific branches, a modality-shared branch, and an Information Aggregation-Distribution Module (IADM) to capture the complementary information of different modalities fully. Specifically, our IADM incorporates two collaborative information transfers to dynamically enhance the modality-shared and modality-specific representations with a dual information propagation mechanism. Extensive experiments conducted on the RGBT-CC benchmark demonstrate the effectiveness of our framework for RGBT crowd counting.

RGBT-CC Benchmark

To promote the future research of this task, we propose a large-scale RGBT Crowd Counting (RGBT-CC) benchmark. Specifically, this benchmark consists of 2,030 pairs of 640x480 RGB-thermal images captured in various scenarios (e.g., malls, streets, playgrounds, train stations, metro stations, etc). Among these samples, 1,013 pairs are captured in the light and 1,017 pairs are in the darkness. A total of 138,389 pedestrians are marked with point annotations, on average 68 people per image. Finally, the proposed RGBT-CC benchmark is randomly divided into three parts: 1030 pairs are used for training, 200 pairs are for validation and 800 pairs are for testing. Compared with those Internet-based datasets with serious bias, our RGBT-CC dataset has closer crowd density distribution to realistic cities, since our images are captured in urban scenes with various densities. Therefore, our dataset has wider applications for urban crowd analysis.

Method

The proposed RGBT crowd counting framework is composed of three parallel backbones and an Information Aggregation-Distribution Module (IADM). Specifically, the top and bottom backbones are developed for modality-specific (i.e. RGB images and thermal images) representation learning, while the middle backbone is designed for modality-shared representation learning. To fully exploit the multimodal complementarities, our IADM dynamically transfers the specific-shared information to collaboratively enhance the modality-specific and modality-shared representations. Consequently, the final modality-shared feature contains comprehensive information and facilitates generating high-quality crowd density maps.

Experiments

More References

Crowd Counting with Deep Structured Scale Integration Network, ICCV 2019 [PDF]

Crowd Counting using Deep Recurrent Spatial-Aware Network, IJCAI 2018 [PDF]

Efficient Crowd Counting via Structured Knowledge Transfer, ACM MM 2020 [PDF]

HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
113 Nov 28, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022