Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Related tags

Deep LearningCARE
Overview

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

This repository is the official implementation of CARE. Graph

Updates

  • (09/10/2021) Our paper is accepted by NeurIPS 2021.

Requirements

To install requirements:

conda create -n care python=3.6
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
pip install tensorboard
pip install ipdb
pip install einops
pip install loguru
pip install pyarrow==3.0.0
pip install tqdm

📋 Pytorch>=1.6 is needed for runing the code.

Data Preparation

Prepare the ImageNet data in {data_path}/train.lmdb and {data_path}/val.lmdb

Relpace the original data path in care/data/dataset_lmdb (Line7 and Line40) with your new {data_path}.

📋 Note that we use the lmdb file to speed-up the data-processing procedure.

Training

Before training the ResNet-50 (100 epoch) in the paper, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then run the training code via:

bash run_train.sh      #(The training script is used for trianing CARE with 8 gpus)
bash single_gpu_train.sh    #(We also provide the script for trainig CARE with only one gpu)

📋 The training script is used to do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. using --log_path to specify the main folder for saving experimental results.
  4. using --experiment-name to specify the folder for saving training outputs.

The code base also supports for training other backbones (e.g., ResNet101 and ResNet152) with different training schedules (e.g., 200, 400 and 800 epochs).

Evaluation

Before start the evaluation, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then, to evaluate the pre-trained model (e.g., ResNet50-100epoch) on ImageNet, run:

bash run_val.sh      #(The training script is used for evaluating CARE with 8 gpus)
bash debug_val.sh    #(We also provide the script for evaluating CARE with only one gpu)

📋 The training script is used to do the supervised linear evaluation of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. Modifying --log_path according to your own config.
  4. Modifying --experiment-name according to your own config.

Pre-trained Models

We here provide some pre-trained models in the [shared folder]:

Here are some examples.

  • [ResNet-50 100epoch] trained on ImageNet using ResNet-50 with 100 epochs.
  • [ResNet-50 200epoch] trained on ImageNet using ResNet-50 with 200 epochs.
  • [ResNet-50 400epoch] trained on ImageNet using ResNet-50 with 400 epochs.

More models are provided in the following model zoo part.

📋 We will provide more pretrained models in the future.

Model Zoo

Our model achieves the following performance on :

Self-supervised learning on image classifications.

Method Backbone epoch Top-1 Top-5 pretrained model linear evaluation model
CARE ResNet50 100 72.02% 90.02% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 200 73.78% 91.50% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 400 74.68% 91.97% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 800 75.56% 92.32% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 100 73.51% 91.66% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 200 75.00% 92.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 400 76.48% 92.99% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 800 77.04% 93.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 100 73.54% 91.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 200 75.89% 92.70% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 400 76.85% 93.31% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 800 77.23% 93.52% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 100 74.59% 92.09% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 200 76.58% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 400 77.40% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 800 78.11% 93.81% [pretrained] (wip) [linear_model] (wip)

Transfer learning to object detection and semantic segmentation.

COCO det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 39.4 59.2 42.6 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 39.6 59.4 42.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 39.5 60.2 43.1 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 39.8 60.5 43.5 [pretrained] (wip) [model] (wip)

COCO instance seg

Method Backbone epoch AP_mk AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 34.6 56.1 36.8 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 34.7 56.1 36.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 35.9 57.2 38.5 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 36.2 57.4 38.8 [pretrained] (wip) [model] (wip)

VOC07+12 det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 57.7 83.0 64.5 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 57.9 83.0 64.7 [pretrained] (wip) [model] (wip)

📋 More results are provided in the paper.

Contributing

📋 WIP

Owner
ChongjianGE
🎯 PhD in Computer Vision ☑️ MSc & BEng in Electrical Engineering
ChongjianGE
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022