A Prometheus Python client library for asyncio-based applications

Overview
https://github.com/claws/aioprometheus/workflows/Python%20Package%20Workflow/badge.svg?branch=master https://readthedocs.org/projects/aioprometheus/badge/?version=latest

aioprometheus

aioprometheus is a Prometheus Python client library for asyncio-based applications. It provides metrics collection and serving capabilities, supports multiple data formats and pushing metrics to a gateway.

The project documentation can be found on ReadTheDocs.

Install

$ pip install aioprometheus

A Prometheus Push Gateway client and ASGI service are also included, but their dependencies are not installed by default. You can install them alongside aioprometheus by running:

$ pip install aioprometheus[aiohttp]

Prometheus 2.0 removed support for the binary protocol, so in version 20.0.0 the dependency on prometheus-metrics-proto, which provides binary support, is now optional. If you want binary response support, for use with an older Prometheus, you will need to specify the 'binary' optional extra:

$ pip install aioprometheus[binary]

Multiple optional dependencies can be listed at once, such as:

$ pip install aioprometheus[aiohttp,binary]

Example

The example below shows a single Counter metric collector being created and exposed via the optional aiohttp service endpoint.

#!/usr/bin/env python
"""
This example demonstrates how a single Counter metric collector can be created
and exposed via a HTTP endpoint.
"""
import asyncio
import socket
from aioprometheus import Counter, Service


if __name__ == "__main__":

    async def main(svr: Service) -> None:

        events_counter = Counter(
            "events", "Number of events.", const_labels={"host": socket.gethostname()}
        )
        svr.register(events_counter)
        await svr.start(addr="127.0.0.1", port=5000)
        print(f"Serving prometheus metrics on: {svr.metrics_url}")

        # Now start another coroutine to periodically update a metric to
        # simulate the application making some progress.
        async def updater(c: Counter):
            while True:
                c.inc({"kind": "timer_expiry"})
                await asyncio.sleep(1.0)

        await updater(events_counter)

    loop = asyncio.get_event_loop()
    svr = Service()
    try:
        loop.run_until_complete(main(svr))
    except KeyboardInterrupt:
        pass
    finally:
        loop.run_until_complete(svr.stop())
    loop.close()

In this simple example the counter metric is tracking the number of while loop iterations executed by the updater coroutine. In a realistic application a metric might track the number of requests, etc.

Following typical asyncio usage, an event loop is instantiated first then a metrics service is instantiated. The metrics service is responsible for managing metric collectors and responding to metrics requests.

The service accepts various arguments such as the interface and port to bind to. A collector registry is used within the service to hold metrics collectors that will be exposed by the service. The service will create a new collector registry if one is not passed in.

A counter metric is created and registered with the service. The service is started and then a coroutine is started to periodically update the metric to simulate progress.

This example and demonstration requires some optional extra to be installed.

$ pip install aioprometheus[aiohttp,binary]

The example script can then be run using:

(venv) $ cd examples
(venv) $ python simple-example.py
Serving prometheus metrics on: http://127.0.0.1:5000/metrics

In another terminal fetch the metrics using the curl command line tool to verify they can be retrieved by Prometheus server.

By default metrics will be returned in plan text format.

$ curl http://127.0.0.1:5000/metrics
# HELP events Number of events.
# TYPE events counter
events{host="alpha",kind="timer_expiry"} 33

Similarly, you can request metrics in binary format, though the output will be hard to read on the command line.

$ curl http://127.0.0.1:5000/metrics -H "ACCEPT: application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited"

The metrics service also responds to requests sent to its / route. The response is simple HTML. This route can be useful as a Kubernetes /healthz style health indicator as it does not incur any overhead within the service to serialize a full metrics response.

$ curl http://127.0.0.1:5000/
<html><body><a href='/metrics'>metrics</a></body></html>

The aioprometheus package provides a number of convenience decorator functions that can assist with updating metrics.

The examples directory contains many examples showing how to use the aioprometheus package. The app-example.py file will likely be of interest as it provides a more representative application example than the simple example shown above.

Examples in the examples/frameworks directory show how aioprometheus can be used within various web application frameworks without needing to create a separate aioprometheus.Service endpoint to handle metrics. The FastAPI example is shown below.

#!/usr/bin/env python
"""
Sometimes you may not want to expose Prometheus metrics from a dedicated
Prometheus metrics server but instead want to use an existing web framework.

This example uses the registry from the aioprometheus package to add
Prometheus instrumentation to a FastAPI application. In this example a registry
and a counter metric is instantiated and gets updated whenever the "/" route
is accessed. A '/metrics' route is added to the application using the standard
web framework method. The metrics route renders Prometheus metrics into the
appropriate format.

Run:

  $ pip install fastapi uvicorn
  $ uvicorn fastapi_example:app

"""

from aioprometheus import render, Counter, Registry
from fastapi import FastAPI, Header, Response
from typing import List


app = FastAPI()
app.registry = Registry()
app.events_counter = Counter("events", "Number of events.")
app.registry.register(app.events_counter)


@app.get("/")
async def hello():
    app.events_counter.inc({"path": "/"})
    return "hello"


@app.get("/metrics")
async def handle_metrics(response: Response, accept: List[str] = Header(None)):
    content, http_headers = render(app.registry, accept)
    return Response(content=content, media_type=http_headers["Content-Type"])

License

aioprometheus is released under the MIT license.

aioprometheus originates from the (now deprecated) prometheus python package which was released under the MIT license. aioprometheus continues to use the MIT license and contains a copy of the original MIT license from the prometheus-python project as instructed by the original license.

Admin Panel for GinoORM - ready to up & run (just add your models)

Gino-Admin Docs (state: in process): Gino-Admin docs Play with Demo (current master 0.2.3) Gino-Admin demo (login: admin, pass: 1234) Admin

Iuliia Volkova 46 Nov 02, 2022
Backend, modern REST API for obtaining match and odds data crawled from multiple sites. Using FastAPI, MongoDB as database, Motor as async MongoDB client, Scrapy as crawler and Docker.

Introduction Apiestas is a project composed of a backend powered by the awesome framework FastAPI and a crawler powered by Scrapy. This project has fo

Fran Lozano 54 Dec 13, 2022
Social Distancing Detector using deep learning and capable to run on edge AI devices such as NVIDIA Jetson, Google Coral, and more.

Smart Social Distancing Smart Social Distancing Introduction Getting Started Prerequisites Usage Processor Optional Parameters Configuring AWS credent

Neuralet 129 Dec 12, 2022
volunteer-database

This is the official CSM (Crowd source medical) database The What Now? We created this in light of the COVID-19 pandemic to allow volunteers to work t

32 Jun 21, 2022
ASGI middleware for authentication, rate limiting, and building CRUD endpoints.

Piccolo API Utilities for easily exposing Piccolo models as REST endpoints in ASGI apps, such as Starlette and FastAPI. Includes a bunch of useful ASG

81 Dec 09, 2022
Piccolo Admin provides a simple yet powerful admin interface on top of Piccolo tables

Piccolo Admin Piccolo Admin provides a simple yet powerful admin interface on top of Piccolo tables - allowing you to easily add / edit / filter your

188 Jan 09, 2023
MLServer

MLServer An open source inference server to serve your machine learning models. ⚠️ This is a Work in Progress. Overview MLServer aims to provide an ea

Seldon 341 Jan 03, 2023
更新 2.0 版本,使用 Python WEB 高性能异步框架 FastAPI 制作的抖音无水印解析下载,采用前后端分离思想!

前言 这个是 2.0 版本,使用现在流行的前后端分离思想重构。 体验网址:https://douyin.bigdataboy.cn 更新日志 2020.05.30:使用 FastAPI 前后端分离重构 2020.05.02:已更新,正常使用 2020.04.27:抖音结构更新,已修复视频有水印。(失

64 Nov 25, 2022
Analytics service that is part of iter8. Robust analytics and control to unleash cloud-native continuous experimentation.

iter8-analytics iter8 enables statistically robust continuous experimentation of microservices in your CI/CD pipelines. For in-depth information about

16 Oct 14, 2021
This is a FastAPI application that provides a RESTful API for the Podcasts from different podcast's RSS feeds

The Podcaster API This is a FastAPI application that provides a RESTful API for the Podcasts from different podcast's RSS feeds. The API response is i

Sagar Giri 2 Nov 07, 2021
The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

Bruno Rocha 251 Jan 09, 2023
Htmdf - html to pdf with support for variables using fastApi.

htmdf Converts html to pdf with support for variables using fastApi. Installation Clone this repository. git clone https://github.com/ShreehariVaasish

Shreehari 1 Jan 30, 2022
A simple docker-compose app for orchestrating a fastapi application, a celery queue with rabbitmq(broker) and redis(backend)

fastapi - celery - rabbitmq - redis - Docker A simple docker-compose app for orchestrating a fastapi application, a celery queue with rabbitmq(broker

Kartheekasasanka Kaipa 83 Dec 19, 2022
Code for my JWT auth for FastAPI tutorial

FastAPI tutorial Code for my video tutorial FastAPI tutorial What is FastAPI? FastAPI is a high-performant REST API framework for Python. It's built o

José Haro Peralta 8 Dec 16, 2022
Example projects built using Piccolo.

Piccolo examples Here are some example Piccolo projects. Tutorials headless blog fastapi Build a documented API with an admin in minutes! Live project

15 Nov 23, 2022
A simple web to serve data table. It is built with Vuetify, Vue, FastApi.

simple-report-data-table-vuetify A simple web to serve data table. It is built with Vuetify, Vue, FastApi. The main features: RBAC with casbin simple

11 Dec 22, 2022
This project is a realworld backend based on fastapi+mongodb

This project is a realworld backend based on fastapi+mongodb. It can be used as a sample backend or a sample fastapi project with mongodb.

邱承 381 Dec 29, 2022
Adds integration of the Jinja template language to FastAPI.

fastapi-jinja Adds integration of the Jinja template language to FastAPI. This is inspired and based off fastapi-chamelon by Mike Kennedy. Check that

Marc Brooks 58 Nov 29, 2022
Monitor Python applications using Spring Boot Admin

Pyctuator Monitor Python web apps using Spring Boot Admin. Pyctuator supports Flask, FastAPI, aiohttp and Tornado. Django support is planned as well.

SolarEdge Technologies 145 Dec 28, 2022
Auth for use with FastAPI

FastAPI Auth Pluggable auth for use with FastAPI Supports OAuth2 Password Flow Uses JWT access and refresh tokens 100% mypy and test coverage Supports

David Montague 95 Jan 02, 2023