Code Repository for The Kaggle Book, Published by Packt Publishing

Overview

The Kaggle Book

Data analysis and machine learning for competitive data science

Code Repository for The Kaggle Book, Published by Packt Publishing

"Luca and Konradˈs book helps make Kaggle even more accessible. They are both top-ranked users and well-respected members of the Kaggle community. Those who complete this book should expect to be able to engage confidently on Kaggle – and engaging confidently on Kaggle has many rewards." — Anthony Goldbloom, Kaggle Founder & CEO

Key Features

  • Learn how Kaggle works and how to make the most of competitions from two expert Kaggle Grandmasters
  • Sharpen your modeling skills with ensembling, feature engineering, adversarial validation, AutoML, transfer learning, and techniques for parameter tuning
  • Challenge yourself with problems regarding tabular data, vision, natural language as well as simulation and optimization
  • Discover tips, tricks, and best practices for getting great results on Kaggle and becoming a better data scientist
  • Read interviews with 31 Kaggle Masters and Grandmasters telling about their experience and tips

Get a step ahead of your competitors with a concise collection of smart data handling and modeling techniques

Getting started

You can run these notebooks on cloud platforms like Kaggle Colab or your local machine. Note that most chapters require a GPU even TPU sometimes to run in a reasonable amount of time, so we recommend one of the cloud platforms as they come pre-installed with CUDA.

Running on a cloud platform

To run these notebooks on a cloud platform, just click on one of the badges (Colab or Kaggle) in the table below. The code will be reproduced from Github directly onto the choosen platform (you may have to add the necessary data before running it). Alternatively, we also provide links to the fully working original notebook on Kaggle that you can copy and immediately run.

no Chapter Notebook Colab Kaggle
05 Competition Tasks and Metrics meta_kaggle Open In Colab Kaggle
06 Designing Good Validation adversarial-validation-example Open In Colab Kaggle
07 Modeling for Tabular Competitions interesting-eda-tsne-umap Open In Colab Kaggle
meta-features-and-target-encoding Open In Colab Kaggle
really-not-missing-at-random Open In Colab Kaggle
tutorial-feature-selection-with-boruta-shap Open In Colab Kaggle
08 Hyperparameter Optimization basic-optimization-practices Open In Colab Kaggle
hacking-bayesian-optimization-for-dnns Open In Colab Kaggle
hacking-bayesian-optimization Open In Colab Kaggle
kerastuner-for-imdb Open In Colab Kaggle
optuna-bayesian-optimization Open In Colab Kaggle
scikit-optimize-for-lightgbm Open In Colab Kaggle
tutorial-bayesian-optimization-with-lightgbm Open In Colab Kaggle
09 Ensembling with Blending and Stacking Solutions ensembling Open In Colab Kaggle
10 Modeling for Computer Vision augmentations-examples Open In Colab Kaggle
images-classification Open In Colab Kaggle
prepare-annotations Open In Colab Kaggle
segmentation-inference Open In Colab Kaggle
segmentation Open In Colab Kaggle
object-detection-yolov5 Open In Colab Kaggle
11 Modeling for NLP nlp-augmentations4 Open In Colab Kaggle
nlp-augmentation1 Open In Colab Kaggle
qanswering Open In Colab Kaggle
sentiment-extraction Open In Colab Kaggle
12 Simulation and Optimization Competitions connectx Open In Colab Kaggle
mab-santa Open In Colab Kaggle
rps-notebook1 Open In Colab Kaggle

Book Description

Millions of data enthusiasts from around the world compete on Kaggle, the most famous data science competition platform of them all. Participating in Kaggle competitions is a surefire way to improve your data analysis skills, network with the rest of the community, and gain valuable experience to help grow your career.

The first book of its kind, Data Analysis and Machine Learning with Kaggle assembles the techniques and skills you’ll need for success in competitions, data science projects, and beyond. Two masters of Kaggle walk you through modeling strategies you won’t easily find elsewhere, and the tacit knowledge they’ve accumulated along the way. As well as Kaggle-specific tips, you’ll learn more general techniques for approaching tasks based on image data, tabular data, textual data, and reinforcement learning. You’ll design better validation schemes and work more comfortably with different evaluation metrics.

Whether you want to climb the ranks of Kaggle, build some more data science skills, or improve the accuracy of your existing models, this book is for you.

What you will learn

  • Get acquainted with Kaggle and other competition platforms
  • Make the most of Kaggle Notebooks, Datasets, and Discussion forums
  • Understand different modeling tasks including binary and multi-class classification, object detection, NLP (Natural Language Processing), and time series
  • Design good validation schemes, learning about k-fold, probabilistic, and adversarial validation
  • Get to grips with evaluation metrics including MSE and its variants, precision and recall, IoU, mean average precision at k, as well as never-before-seen metrics
  • Handle simulation and optimization competitions on Kaggle
  • Create a portfolio of projects and ideas to get further in your career

Who This Book Is For

This book is suitable for Kaggle users and data analysts/scientists with at least a basic proficiency in data science topics and Python who are trying to do better in Kaggle competitions and secure jobs with tech giants. At the time of completion of this book, there are 96,190 Kaggle novices (users who have just registered on the website) and 67,666 Kaggle contributors (users who have just filled in their profile) enlisted in Kaggle competitions. This book has been written with all of them in mind and with anyone else wanting to break the ice and start taking part in competitions on Kaggle and learning from them.

Table of Contents

Part 1

  1. Introducing Kaggle and Other Data Science Competitions
  2. Organizing Data with Datasets
  3. Working and Learning with Kaggle Notebooks
  4. Leveraging Discussion Forums

Part 2

  1. Competition Tasks and Metrics
  2. Designing Good Validation
  3. Modeling for Tabular Competitions
  4. Hyperparameter Optimization
  5. Ensembling with Blending and Stacking Solutions
  6. Modeling for Computer Vision
  7. Modeling for NLP
  8. Simulation and Optimization Competitions

Part 3

  1. Creating Your Portfolio of Projects and Ideas
  2. Finding New Professional Opportunities
Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022