Final-project-robokeeper created by GitHub Classroom

Related tags

HardwareRoboKeeper
Overview

RoboKeeper!

Jonny Bosnich, Joshua Cho, Lio Liang, Marco Morales, Cody Nichoson


Robokeeper being a boss height=

Demonstration Videos

Equipment

Hardware:
  • HDT Global Adroit Manipulator Arm
  • Intel RealSense Camera
Software:
  • Robot Operating System (ROS)
  • MoveIt!
  • OpenCV
  • AprilTag

Quickstart Guide

  1. Install ROS Noetic on Ubuntu 20.04
  2. Create catkin workspace
    $ source /opt/ros/noetic/setup.bash
    $ mkdir -p ~/catkin_ws/src
    $ cd ~/catkin_ws/
    $ catkin_make
    
  3. Copy this repository into src folder
    $ cd ~/catkin_ws/src
    $ git clone [email protected]:ME495-EmbeddedSystems/final-project-robokeeper.git
    
  4. Install required packages and build
    $ source devel/setup.bash
    $ rosdep install --from-paths src --ignore-src -r -y
    $ catkin_make
    

Running the package

  1. First, run the main launchfile. To run the program on the real robot, run the command below.

    roslaunch robokeeper robokeeper_go.launch
    
  2. If using a simulation, add the sim:=true argument when running the main launchfile.

    roslaunch robokeeper robokeeper_go.launch sim:=true
    
  3. The robot now has to pick up the paddle and this is done with two services. First, call above_paddle.

    rosservice call /above_paddle
    
  4. Next, call the 'retrieve_paddle` service.

    rosservice call /retrieve_paddle
    
  5. Call the reset service to move the robot in front of the goal.

    rosservice call /reset
    
  6. Call start_keeping to enable the goal keeping component of the project.

    rosservice call /start_keeping
    
  7. When finished, call the 'stop_keeping' service.

    rosservice call /stop_keeping 
    

Launchfiles

robokeeper_go.launch

This is the main launchfile used to operate robokeeper. It starts by launching robokeeper_moveit.launch which loads the necessary urdf file and hardware configuration, as well as the main MoveIt! executable. It then launches intel_cam.launch which starts the Intel Realsense camera. It also starts a transforms node which handles the calculation of transformation between various frames within the world. Finally, the launchfile starts a motion_control node that publishes appropriate joint state messages to actuate the arm.

robokeeper_moveit.launch

This launchfile loads robot description for the Adroit 6-dof manipulator arm, as well as its hardware and controller configuration from the hdt_6dof_a24_pincer_description package. It also includes move_group.launch from the hdt_6dof_a24_pincer_moveit package, which starts the move group that MoveIt! uses to plan the motion of the arm.

intel_cam.launch

This launchfile starts the Intel Realsense camera by launching rs_camera.launch from the realsense2_camera package. It then launches AprilTag_detection.launch for AprilTag integration.

AprilTag_detection.launch

This launchfile loads parameters necessary for integrating AprilTag detection, which is crucial for detecting the position of the robot relative to the camera. It starts apriltag_ros_continuous_node from the apriltag_ros package.

Nodes

perception

The perception node is responsible for handling the data collected from the Intel RealSense camera utilized to identify and locate the objects that our robot is tasked with blocking. It contains a CV bridge to enable OpenCV integration with ROS, subscribes to the RealSense's camera data, and ultimately publishes 3-dimensional coordinate data of the centroid of the object of interest (a red ball for our purposes).

In order to identify the ball, video frames are iteratively thresholded for a range of HSV values that closely match those of our ball. Once the area of interest is located, a contour is created around its edges and the centroid of the contour located. This centroid can then be treated as the location of the ball in the camera frame and published appropriately.

transforms

Knowing where the ball is relative to the camera is great, but it doesn't help the robot locate the ball. In order to accomplish this, transformations between the camera frame and the robot frame are necessary. This node subscribes to both the ball coordinates from the perception node and AprilTag detections, and publishes the transformed ball coordinates in the robot frame.

In order to complete the relationship between the two frames, an AprilTag with a known transformation between itself and the baselink of the robot (positioned on the floor next to the robot) was used. Using the RealSense, the transformation between the camera frame and the AprilTag can then also be determined. Using these three frames and their relationships, the transformation between coordinates in the camera frame and coordinates in the robot frame can finally be determined.

motion_control

This node provides the core functionality of the robokeeper. Primarily, it subscribes to the topic containing the ball coordinates in the robot frame and contains a number of services utilized to interact with its environment in several ways.

The main service used is /start_keeping. As the name suggests, this service allows the robot to begin interpreting the ball coordinates and attempting to intersect it at the goal line. Appropriate joint trajectory commands are sent to the robot through a mix of MoveIt! and direct joint publishing (depending on the service called) in order to accomplish the task. This node also keeps track of goals scored by determining if the ball has entered the net.

Services

  1. The reset service moves the Adroit arm directly in front of its base and the goal.

    rosservice call /reset
    
  2. The keep service moves the robotic arm to a pose that is only dependent on a y-value. An example of the service being called follows.

    rosservice call /keep "pos: 0.0"
    
  3. above_paddle is a service that moves the arm directly above the paddle holster to get in a position for consistent retrieval.

    rosservice call /above_paddle
    
  4. To retrieve the paddle, the retrieve_paddle can be called. It moves the arm to a postion where it can grip the paddle, it then closes the gripper, and finally moves to the same position as above_paddle.

    rosservice call /retrieve_paddle
    
  5. The start_keeping service enables the robot to block the red ball from entering the goal.

    rosservice call /start_keeping
    
  6. To stop the robot from moving and tracking the ball, call the stop_keeping service.

    rosservice call /stop_keeping 
    

Additional Notes

There are some features within this code that were partially developed, but not completed due to time contraints. Because of this, you may notice certain things in the source code that are not mentioned here.

An example of this is the scoreboard feature. The original plan was to include both a goal counter and block counter when playing with the robot and display these stats to the user in order to create a game. The goal counter was successfully created, but we didn't have time to complete the black counter. The goal counter is located within the 'motion_control' node and the infrastructure for displaying the actual scoreboard using the 'tkinter' library is located in a node called 'scorekeeper'.

Owner
Cody Nichoson
Cody Nichoson
Home Assistant custom components MPK-Lodz

MPK Łódź sensor This sensor uses unofficial API provided by MPK Łódź. Configuration options Key Type Required Default Description name string False MP

Piotr Machowski 3 Nov 01, 2022
Isaac Gym Environments for Legged Robots

Isaac Gym Environments for Legged Robots This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain usi

Robotic Systems Lab - Legged Robotics at ETH Zürich 372 Jan 08, 2023
Alarm Control Panel component for Zigbee Keypads using action_transaction field

hass_transaction_alarm_panel Alarm Control Panel component for Zigbee Keypads using action_transaction field. Works together with zigbee2mqtt Supporte

Konstantin 4 Jun 09, 2022
HA-Edge-Connector - HA Edge Connector For Python

HA-Edge-Connector 1. Required a. Smartthings Hub & Homeassistant must be in same

chals 21 Dec 29, 2022
Example for Calculating Robot Dynamics Using Pinocchio Library

A Example for Calculating Robot Dynamics Using Pinocchio Library Developed by: Xinyang Tian. Platform: Linux + Pinocchio. In this work, i use Pinocchi

Rot_Tianers 33 Dec 28, 2022
Count the number of people around you 👨‍👨‍👦 by monitoring wifi signals 📡 .

howmanypeoplearearound Count the number of people around you 👨‍👨‍👦 by monitoring wifi signals 📡 . howmanypeoplearearound calculates the number of

Zack 6.7k Jan 07, 2023
Simple python3 implementation of microKanren with lots of type annotations for clarity

MicroKanren-py This is (yet another) python implementation of microKanren. It's a reasonably 1:1 translation of the code provided in the paper, but ev

Erik Derohanian 3 Dec 10, 2022
Simple Weather Check base on Hefeng api, Work on raspberry Pi

Simple Weather Check base on Hefeng api, Work on raspberry Pi

Retr0mous 28 Sep 17, 2022
ESP32 micropython implementation of Art-Net client

E_uArtnet ESP32 micropython implementation of Art-Net client Instalation Use thonny Open the root folder in thonny and upload the Empire folder like i

2 Dec 07, 2021
Vvim - Keyboardless Vim interactions

This is done via a hardware glove that the user wears. The glove detects the finger's positions and translates them into key presses. It's currently a work in progress.

Boyd Kane 8 Nov 17, 2022
Andreas Frisch 1 Jan 10, 2022
This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction.

Structured-light-stereo This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction. . How to use: STEP 1:

FEI 20 Dec 31, 2022
uOTA - OTA updater for MicroPython

Update your device firmware written in MicroPython over the air. Suitable for private and/or larger projects with many files.

Martin Komon 25 Dec 19, 2022
Jarvis: a personal assistant which can help you to manage your system

Jarvis Jarvis is personal AI based assistant which can help you to manage stuff in your computer. This is demo but I decided to make it more better so

2 Jun 02, 2022
FHEM Connector for FHT Heating devices

home-assistant-fht from: https://github.com/Rsclub22 FHEM Connector for FHT Heating devices (connected via FHEM) Requires FHEM to work You can find FH

5 Dec 01, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023
a weather application for the raspberry pi and the Pimorioni Inky pHAT.

raspi-weather a weather application for the raspberry pi and the Inky pHAT

Derek Caelin 59 Oct 24, 2022
Sleep Functionality for Adafruit MacroPad RP2040

Adafruit-MacroPad-RP2040 Sleep Functionality for Adafruit MacroPad RP2040 Details This is a modification of AdaFruit project bundle found here specifi

9 Dec 18, 2022
a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico

pico_ws2812b a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico You'll first need to save the ws2812b.py file to your device (for

76 Nov 25, 2022
Micro Displays for Raspberry Pi

micro-displays Micro Displays for Raspberry Pi Why? I'm super bored in lockdown. Add a Raspberry Pi 400 and a few tiny displays... The top half of the

ig 291 Jul 06, 2022