A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

Related tags

Deep Learninguninas
Overview

UniNAS

A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

under development

(which happens mostly on our internal GitLab, we push only every once in a while to Github)

  • APIs may change
  • argparse arguments may be moved to more fitting classes
  • there may be incomplete or not-yet-working pieces of code
  • ...

Features

  • modular and therefore reusable
    • data set loading,
    • network building code and topologies,
    • methods to train architecture weights,
    • sets of operations (primitives),
    • weight initializers,
    • metrics,
    • ... and more
  • everything is configurable from the command line and/or config files
    • improved reproducibility, since detailed run configurations are saved and logged
    • powerful search network descriptions enable e.g. highly customizable weight sharing settings
    • the underlying argparse mechanism enables using a GUI for configurations
  • compare results of different methods in the same environment
  • import and export detailed network descriptions
  • integrate new methods and more with fairly little effort
  • NAS-Benchmark integration
    • NAS-Bench 201
  • ... and more

Where is this code from?

Except for a few pieces, the code is entirely self-written. However, sometimes the (official) code is useful to learn from or clear up some details, and other frameworks can be used for their nice features.

Other meta-NAS frameworks

  • Deep Architect
    • highly customizable search spaces, hyperparameters, ...
    • the searchers (SMBO, MCTS, ...) focus on fully training (many) models and are not differentiable
  • D-X-Y NAS-Projects
  • Auto-PyTorch
    • stronger focus on model selection than optimizing one architecture
  • Vega
  • NNI

Repository notes

Dynamic argparse tree

Everything is an argument. Learning rate? Argument. Scheduler? Argument. The exact topology of a Network, including how many of each cell and whether they share their architecture weights? Also arguments.

This is enabled by the idea that each used class (method, network, cells, regularizers, ...) can add arguments to argparse, including which further classes are required (e.g. a method needs a network, which needs a stem).

It starts with the Main class adding a Task (cls_task), which itself adds all required components (cls_*).

To see all available (meta) arguments, run Main.list_all_arguments() in uninas/main.py

Graphical user interface

Since putting together the arguments correctly is not trivial (and requires some familiarity with the code base), an easier approach is using a GUI.

Have a look at uninas/gui/tk_gui/main.py, a tkinter GUI frontend.

The GUI can automatically filter usable classes, display available arguments, and display tooltips; based only on the implemented argparse (meta) arguments in the respective classes.

Some meta arguments take a single class name:

e.g: cls_task, cls_trainer, cls_data, cls_criterion, cls_method

The chosen classes define their own arguments, e.g.:

  • cls_trainer="SimpleTrainer"
  • SimpleTrainer.max_epochs=100
  • SimpleTrainer.test_last=10

Their names are also available as wildcards, automatically using their respectively set class name:

  • cls_trainer="SimpleTrainer"
  • {cls_trainer}.max_epochs --> SimpleTrainer.max_epochs
  • {cls_trainer}.test_last --> SimpleTrainer.test_last

Some meta arguments take a comma-separated list of class names:

e.g. cls_metrics, cls_initializers, cls_regularizers, cls_optimizers, cls_schedulers

The chosen classes also define their own arguments, but always include an index, e.g.:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • DropOutRegularizer#0.prob=0.5
  • DropPathRegularizer#1.max_prob=0.3
  • DropPathRegularizer#1.drop_id_paths=false

And they are also available as indexed wildcards:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • {cls_regularizers#0}.prob --> DropOutRegularizer#0.prob
  • {cls_regularizers#1}.max_prob --> DropPathRegularizer#1.max_prob
  • {cls_regularizers#1}.drop_id_paths --> DropPathRegularizer#1.drop_id_paths

Register

UniNAS makes heavy use of a registering mechanism (via decorators in uninas/register.py). Classes of the same type (e.g. optimizers, networks, ...) will register in one RegisterDict.

Registered classes can be accessed via their name in the Register, no matter of their actual location in the code. This enables e.g. saving network topologies as nested dictionaries, no matter how complicated they are, since the class names are enough to find the classes in the code. (It also grants a certain amount of refactoring-freedom.)

Exporting networks

(Trained) Networks can easily be used by other PyTorch frameworks/scripts, see verify.py for an easy example.

Citation

The framework

we will possibly create a whitepaper at some point

@misc{kl2020uninas,
  author = {Kevin Alexander Laube},
  title = {UniNAS},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/cogsys-tuebingen/uninas}}
}

Inter-choice dependent super-network weights

  1. Train super-networks, e.g. via experiments/demo/inter_choice_weights/icw1_train_supernet_nats.py
    • you will need Cifar10, but can also easily use fake data or download it
    • to generate SubImageNet see uninas/utils/generate/data/subImageNet
  2. Evaluate the super-network, e.g. via experiments/demo/inter_choice_weights/icw2_eval_supernet.py
  3. View the evaluation results in the save dir, in TensorBoard or plotted directly
@article{laube2021interchoice,
  title={Inter-choice dependent super-network weights},
  author={Kevin Alexander Laube, Andreas Zell},
  journal={arXiv preprint arXiv:2104.11522},
  year={2021}
}
Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022