Kalman filter library

Overview

Kalman filter library

Introduction

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM. It is designed to provide very accurate results, work online or offline, be fairly computationally efficient, be easy to design filters with in python.

Feature walkthrough

Extended Kalman Filter with symbolic Jacobian computation

Most dynamic systems can be described as a Hidden Markov Process. To estimate the state of such a system with noisy measurements one can use a Recursive Bayesian estimator. For a linear Markov Process a regular linear Kalman filter is optimal. Unfortunately, a lot of systems are non-linear. Extended Kalman Filters can model systems by linearizing the non-linear system at every step, this provides a close to optimal estimator when the linearization is good enough. If the linearization introduces too much noise, one can use an Iterated Extended Kalman Filter, Unscented Kalman Filter or a Particle Filter. For most applications those estimators are overkill. They add a lot of complexity and require a lot of additional compute.

Conventionally Extended Kalman Filters are implemented by writing the system's dynamic equations and then manually symbolically calculating the Jacobians for the linearization. For complex systems this is time consuming and very prone to calculation errors. This library symbolically computes the Jacobians using sympy to simplify the system's definition and remove the possibility of introducing calculation errors.

Error State Kalman Filter

3D localization algorithms usually also require estimating orientation of an object in 3D. Orientation is generally represented with euler angles or quaternions.

Euler angles have several problems, there are multiple ways to represent the same orientation, gimbal lock can cause the loss of a degree of freedom and lastly their behaviour is very non-linear when errors are large. Quaternions with one strictly positive dimension don't suffer from these issues, but have another set of problems. Quaternions need to be normalized otherwise they will grow unbounded, but this cannot be cleanly enforced in a kalman filter. Most importantly though a quaternion has 4 dimensions, but only represents 3 degrees of freedom, so there is one redundant dimension.

Kalman filters are designed to minimize the error of the system's state. It is possible to have a kalman filter where state and the error of the state are represented in a different space. As long as there is an error function that can compute the error based on the true state and estimated state. It is problematic to have redundant dimensions in the error of the kalman filter, but not in the state. A good compromise then, is to use the quaternion to represent the system's attitude state and use euler angles to describe the error in attitude. This library supports and defining an arbitrary error that is in a different space than the state. Joan Solร  has written a comprehensive description of using ESKFs for robust 3D orientation estimation.

Multi-State Constraint Kalman Filter

How do you integrate feature-based visual odometry with a Kalman filter? The problem is that one cannot write an observation equation for 2D feature observations in image space for a localization kalman filter. One needs to give the feature observation a depth so it has a 3D position, then one can write an obvervation equation in the kalman filter. This is possible by tracking the feature across frames and then estimating the depth. However, the solution is not that simple, the depth estimated by tracking the feature across frames depends on the location of the camera at those frames, and thus the state of the kalman filter. This creates a positive feedback loop where the kalman filter wrongly gains confidence in it's position because the feature position updates reinforce it.

The solution is to use an MSCKF, which this library fully supports.

Rauchโ€“Tungโ€“Striebel smoothing

When doing offline estimation with a kalman filter there can be an initialization period where states are badly estimated. Global estimators don't suffer from this, to make our kalman filter competitive with global optimizers we can run the filter backwards using an RTS smoother. Those combined with potentially multiple forward and backwards passes of the data should make performance very close to global optimization.

Mahalanobis distance outlier rejector

A lot of measurements do not come from a Gaussian distribution and as such have outliers that do not fit the statistical model of the Kalman filter. This can cause a lot of performance issues if not dealt with. This library allows the use of a mahalanobis distance statistical test on the incoming measurements to deal with this. Note that good initialization is critical to prevent good measurements from being rejected.

Owner
comma.ai
Make driving chill
comma.ai
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
Katana project is a template for ASAP ๐Ÿš€ ML application deployment

Katana project is a FastAPI template for ASAP ๐Ÿš€ ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
๐Ÿ”ฌ A curated list of awesome machine learning strategies & tools in financial market.

๐Ÿ”ฌ A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
A Collection of Conference & School Notes in Machine Learning ๐Ÿฆ„๐Ÿ“๐ŸŽ‰

Machine Learning Conference & Summer School Notes. ๐Ÿฆ„๐Ÿ“๐ŸŽ‰

558 Dec 28, 2022
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023