Simple but maybe too simple config management through python data classes. We use it for machine learning.

Overview

๐Ÿ‘ฉโ€โœˆ๏ธ Coqpit

CI

Simple, light-weight and no dependency config handling through python data classes with to/from JSON serialization/deserialization.

Currently it is being used by ๐Ÿธ TTS.

โ” Why I need this

What I need from a ML configuration library...

  1. Fixing a general config schema in Python to guide users about expected values.

    Python is good but not universal. Sometimes you train a ML model and use it on a different platform. So, you need your model configuration file importable by other programming languages.

  2. Simple dynamic value and type checking with default values.

    If you are a beginner in a ML project, it is hard to guess the right values for your ML experiment. Therefore it is important to have some default values and know what range and type of input are expected for each field.

  3. Ability to decompose large configs.

    As you define more fields for the training dataset, data preprocessing, model parameters, etc., your config file tends to get quite large but in most cases, they can be decomposed, enabling flexibility and readability.

  4. Inheritance and nested configurations.

    Simply helps to keep configurations consistent and easier to maintain.

  5. Ability to override values from the command line when necessary.

    For instance, you might need to define a path for your dataset, and this changes for almost every run. Then the user should be able to override this value easily over the command line.

    It also allows easy hyper-parameter search without changing your original code. Basically, you can run different models with different parameters just using command line arguments.

  6. Defining dynamic or conditional config values.

    Sometimes you need to define certain values depending on the other values. Using python helps to define the underlying logic for such config values.

  7. No dependencies

    You don't want to install a ton of libraries for just configuration management. If you install one, then it is better to be just native python.

๐Ÿ” Examples

๐Ÿ‘‰ Simple Coqpit

import os
from dataclasses import asdict, dataclass, field

from coqpit.coqpit import MISSING, Coqpit, check_argument


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"
    # mandatory field
    # raise an error when accessing the value if it is not changed. It is a way to define
    val_k: int = MISSING
    # optional field
    val_dict: dict = field(default_factory=lambda: {"val_aa": 10, "val_ss": "This is in a dict."})
    # list of list
    val_listoflist: List[List] = field(default_factory=lambda: [[1, 2], [3, 4]])
    val_listofunion: List[List[Union[str]]] = field(default_factory=lambda: [[1, 3], [1, "Hi!"]])

    def check_values(
        self,
    ):  # you can define explicit constraints on the fields using `check_argument()`
        """Check config fields"""
        c = asdict(self)
        check_argument("val_a", c, restricted=True, min_val=10, max_val=2056)
        check_argument("val_b", c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument("val_c", c, restricted=True)


if __name__ == "__main__":
    file_path = os.path.dirname(os.path.abspath(__file__))
    config = SimpleConfig()

    # try MISSING class argument
    try:
        k = config.val_k
    except AttributeError:
        print(" val_k needs a different value before accessing it.")
    config.val_k = 1000

    # try serialization and deserialization
    print(config.serialize())
    print(config.to_json())
    config.save_json(os.path.join(file_path, "example_config.json"))
    config.load_json(os.path.join(file_path, "example_config.json"))
    print(config.pprint())

    # try `dict` interface
    print(*config)
    print(dict(**config))

    # value assignment by mapping
    config["val_a"] = -999
    print(config["val_a"])
    assert config.val_a == -999

๐Ÿ‘‰ Serialization

import os
from dataclasses import asdict, dataclass, field
from coqpit import Coqpit, check_argument
from typing import List, Union


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_c: str = "Coqpit is great!"

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_c', c, restricted=True)


@dataclass
class NestedConfig(Coqpit):
    val_d: int = 10
    val_e: int = None
    val_f: str = "Coqpit is great!"
    sc_list: List[SimpleConfig] = None
    sc: SimpleConfig = SimpleConfig()
    union_var: Union[List[SimpleConfig], SimpleConfig] = field(default_factory=lambda: [SimpleConfig(),SimpleConfig()])

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_d', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_e', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_f', c, restricted=True)
        check_argument('sc_list', c, restricted=True, allow_none=True)
        check_argument('sc', c, restricted=True, allow_none=True)


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    # init ๐Ÿธ dataclass
    config = NestedConfig()

    # save to a json file
    config.save_json(os.path.join(file_path, 'example_config.json'))
    # load a json file
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the json file.
    config2.load_json(os.path.join(file_path, 'example_config.json'))
    # now they should be having the same values.
    assert config == config2

    # pretty print the dataclass
    print(config.pprint())

    # export values to a dict
    config_dict = config.to_dict()
    # crate a new config with different values than the defaults
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the exported valuess from the previous config.
    config2.from_dict(config_dict)
    # now they should be having the same values.
    assert config == config2

๐Ÿ‘‰ argparse handling and parsing.

import argparse
import os
from dataclasses import asdict, dataclass, field
from typing import List

from coqpit.coqpit import Coqpit, check_argument
import sys


@dataclass
class SimplerConfig(Coqpit):
    val_a: int = field(default=None, metadata={'help': 'this is val_a'})


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = field(default=10,
                       metadata={'help': 'this is val_a of SimpleConfig'})
    val_b: int = field(default=None, metadata={'help': 'this is val_b'})
    val_c: str = "Coqpit is great!"
    mylist_with_default: List[SimplerConfig] = field(
        default_factory=lambda:
        [SimplerConfig(val_a=100),
         SimplerConfig(val_a=999)],
        metadata={'help': 'list of SimplerConfig'})

    # mylist_without_default: List[SimplerConfig] = field(default=None, metadata={'help': 'list of SimplerConfig'})  # NOT SUPPORTED YET!

    def check_values(self, ):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b',
                       c,
                       restricted=True,
                       min_val=128,
                       max_val=4058,
                       allow_none=True)
        check_argument('val_c', c, restricted=True)


def main():
    # initial config
    config = SimpleConfig()
    print(config.pprint())

    # reference config that we like to match with the config above
    config_ref = SimpleConfig(val_a=222,
                              val_b=999,
                              val_c='this is different',
                              mylist_with_default=[
                                  SimplerConfig(val_a=222),
                                  SimplerConfig(val_a=111)
                              ])

    # create and init argparser with Coqpit
    parser = argparse.ArgumentParser()
    parser = config.init_argparse(parser)
    parser.print_help()
    args = parser.parse_args()

    # parse the argsparser
    config.parse_args(args)
    config.pprint()
    # check the current config with the reference config
    assert config == config_ref


if __name__ == '__main__':
    sys.argv.extend(['--coqpit.val_a', '222'])
    sys.argv.extend(['--coqpit.val_b', '999'])
    sys.argv.extend(['--coqpit.val_c', 'this is different'])
    sys.argv.extend(['--coqpit.mylist_with_default.0.val_a', '222'])
    sys.argv.extend(['--coqpit.mylist_with_default.1.val_a', '111'])
    main()

๐Ÿคธโ€โ™€๏ธ Merging coqpits

import os
from dataclasses import dataclass
from coqpit.coqpit import Coqpit, check_argument


@dataclass
class CoqpitA(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"


@dataclass
class CoqpitB(Coqpit):
    val_d: int = 25
    val_e: int = 257
    val_f: float = -10.21
    val_g: str = "Coqpit is really great!"


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    coqpita = CoqpitA()
    coqpitb = CoqpitB()
    coqpitb.merge(coqpita)
    print(coqpitb.val_a)
    print(coqpitb.pprint())
Comments
  • Allow file-like objects when saving and loading

    Allow file-like objects when saving and loading

    Allow users to save the configs to arbitrary locations through file-like objects. Would e.g. simplify coqui-ai/TTS#683 without adding an fsspec dependency to this library.

    opened by agrinh 6
  • Latest PR causes an issue when a `Serializable` has default None

    Latest PR causes an issue when a `Serializable` has default None

    https://github.com/coqui-ai/coqpit/blob/5379c810900d61ae19d79b73b03890fa103487dd/coqpit/coqpit.py#L539

    @reuben I am on it but if you have an easy fix go for it. Right now it breaks all the TTS trainings.

    opened by erogol 2
  • [feature request] change the `arg_perfix` of coqpit

    [feature request] change the `arg_perfix` of coqpit

    Is it possible to change the arg_perfix when using Coqpit object to another value / empty string? I see the option is supported in the code by changing arg_perfix, but not sure how to access it using the proposed API.

    Thanks for the package, looks very useful!

    opened by mosheman5 1
  • Setup CI to push new tags to PyPI automatically

    Setup CI to push new tags to PyPI automatically

    I'm gonna add a workflow to automatically upload new tags to PyPI. @erogol when you have a chance could you transfer the coqpit project on PyPI to the coqui user?[0] Then you can add your personal account as a maintainer also, so you don't have to change your local setup.

    In the mean time I'll iterate on testpypi.

    [0] https://pypi.org/user/coqui/

    opened by reuben 1
  • Fix rsetattr

    Fix rsetattr

    rsetattr() is updated to pass the new test cases below.

    I don't know if it is the right solution. It might be that rsetattr confuses when coqpit is used as a prefix.

    opened by erogol 0
  • [feature request] Warning when unexpected key is loaded but not present in class

    [feature request] Warning when unexpected key is loaded but not present in class

    Here is an toy scenario where it would be nice to have a warning

    from dataclasses import dataclass
    from coqpit import Coqpit
    
    @dataclass
    class SimpleConfig(Coqpit):
        val_a: int = 10
        val_b: int = None
    
    if __name__ == "__main__":
        config = SimpleConfig()
    
        tmp_config = config.to_dict()
        tmp_config["unknown_key"] = "Ignored value"
        config.from_dict(tmp_config)
        print(config.to_json())
    

    There the value of config.to_json() is

    {
        "val_a": 10,
        "val_b": null
    }
    

    Which is expected behaviour, but we should get a warning that some keys were ignored (IMO)

    feature request 
    opened by WeberJulian 6
  • [feature request] Add `is_defined`

    [feature request] Add `is_defined`

    Use coqpit.is_defined('field') to check if "field" in coqpit and coqpit.field is not None:

    It is a common condition when you parse out a coqpit object.

    feature request 
    opened by erogol 0
  • Allow grouping of argparse fields according to subclassing

    Allow grouping of argparse fields according to subclassing

    When using inheritance to extend config definitions the resulting ArgumentParser has all fields flattened out. It would be nice to group fields by class and allow some control over ordering.

    opened by reuben 2
Releases(v0.0.17)
Owner
coqui
Coqui, a startup providing open speech tech for everyone ๐Ÿธ
coqui
Tools for dos (denial-of-service) website / web server

DoS Attack Tools Tools for dos (denial-of-service) website / web server di buat olah NurvySec How to install on debian / ubuntu $ apt update $ apt ins

nurvy 1 Feb 10, 2022
๐Ÿ’˜ Write any Python with 9 Characters: e,x,c,h,r,(,+,1,)

๐Ÿ’˜ PyFuck exchr(+1) PyFuck is a strange playful code. It uses only nine different characters to write Python3 code. Inspired by aemkei/jsfuck Example

Satoki 10 Dec 25, 2022
A bash-like intrepreted language

A Bash-like interpreted scripting language.

AshVXmc 1 Oct 28, 2021
A micro-service that can be extended to help in monitoring systems

A micro-service that can be extended to help in monitoring systems. Be extensible to be incorporated in any of the systems to facilitate timely interventions.

Peter Kagwe 1 Feb 06, 2022
Flask html response minifier

Flask-HTMLmin Minify flask text/html mime type responses. Just add MINIFY_HTML = True to your deployment config to minify HTML and text responses of y

Hamid Feizabadi 85 Dec 07, 2022
Automates the fixing of problems reported by yamllint by parsing its output

yamlfixer yamlfixer automates the fixing of problems reported by yamllint by parsing its output. Usage This software automatically fixes some errors a

OPT Nouvelle Caledonie 26 Dec 26, 2022
Run CodeServer on Google Colab using Inlets in less than 60 secs using your own domain.

Inlets Colab Run CodeServer on Colab using Inlets in less than 60 secs using your own domain. Features Optimized for Inlets/InletsPro Use your own Cus

2 Dec 30, 2021
๐Ÿ‡ฎ๐Ÿ‡ณ A Indian Flag Animation Project Made With Python

๐Ÿ‡ฎ๐Ÿ‡ณ A Indian Flag Animation Project Made With Python

MuFaz-TG 2 Oct 21, 2022
TinyBar - Tiny MacOS menu bar utility to track price dynamics for assets on TinyMan.org

๐Ÿ“ƒ About A simple MacOS menu bar app to display current coins from most popular Liquidity Pools on TinyMan.org

Al 8 Dec 23, 2022
Traits for Python3

Do you like Python, but think that multiple inheritance is a bit too flexible? Are you looking for a more constrained way to define interfaces and re-use code?

121 Nov 15, 2022
Low-level Python CFFI Bindings for Argon2

Low-level Python CFFI Bindings for Argon2 argon2-cffi-bindings provides low-level CFFI bindings to the Argon2 password hashing algorithm including a v

Hynek Schlawack 4 Dec 15, 2022
Python with braces. Because Python is awesome, but whitespace is awful.

Bython Python with braces. Because Python is awesome, but whitespace is awful. Bython is a Python preprosessor which translates curly brackets into in

1 Nov 04, 2021
Checking-For-Fibonacci-Syquence-In-Python - Checking For Fibonacci Syquence In Python

Checking-For-Fibonacci-Syquence-In-Python The Fibonacci sequence is a set of num

John Michael Oliba 1 Feb 14, 2022
Convert Photoshop curves (acv) to xmp presets for Lightroom

acv2xmp Convert Photoshop curves (acv) to Lightroom preset (xmp) acv2xmp.py Basic command prompt that relies on standard library only and can be used

5 Feb 06, 2022
Paimon is a pixie (or script) who was made for anyone from {EPITECH} who are struggling with the Coding Style.

Paimon Paimon is a pixie (or script) who was made for anyone from {EPITECH} who are struggling with the Coding Style. Her goal is to assist you in you

Lyy 2 Oct 17, 2021
Inviare messaggi tramite app IO a partire da dati contenuti in file .csv

parlaConIO Inviare messaggi tramite app IO a partire da dati contenuti in file .csv -- Nessun obbligo, ma in caso di clonazione o uso del programma c

Francesco Del Castillo 6 Aug 22, 2022
LOC-FLOW is an โ€œhands-freeโ€ earthquake location workflow to process continuous seismic records

LOC-FLOW is an โ€œhands-freeโ€ earthquake location workflow to process continuous seismic records: from raw waveforms to well located earthquakes with magnitude calculations. The package assembles sever

Miao Zhang 71 Jan 09, 2023
A simple BrainF**k compiler written in Python

bf-comp A simple BrainF**k compiler written in Python. What else were you looking for?

1 Jan 09, 2022
This is a Fava extension to display a grouped portfolio view in Fava for a set of Beancount accounts.

Fava Portfolio Summary This is a Fava extension to display a grouped portfolio view in Fava for a set of Beancount accounts. It can also calculate MWR

18 Dec 26, 2022
Repo to store back end infrastructure for Message in a Bottle

Message in a Bottle Backend API RESTful API for Message in a Bottle frontend application consumption. About The Project โ€ข Tools Used โ€ข Local Set Up โ€ข

4 Dec 05, 2021