CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

Overview

CoMoGAN: Continuous Model-guided Image-to-Image Translation

Official repository.

Paper

CoMoGAN

CoMoGAN

CoMoGAN: continuous model-guided image-to-image translation [arXiv] | [supp] | [teaser]
Fabio Pizzati, Pietro Cerri, Raoul de Charette
Inria, Vislab Ambarella. CVPR'21 (oral)

If you find our work useful, please cite:

@inproceedings{pizzati2021comogan,
  title={{CoMoGAN}: continuous model-guided image-to-image translation},
  author={Pizzati, Fabio and Cerri, Pietro and de Charette, Raoul},
  booktitle={CVPR},
  year={2021}
}

Prerequisites

Tested with:

  • Python 3.7
  • Pytorch 1.7.1
  • CUDA 11.0
  • Pytorch Lightning 1.1.8
  • waymo_open_dataset 1.3.0

Preparation

The repository contains training and inference code for CoMo-MUNIT training on waymo open dataset. In the paper, we refer to this experiment as Day2Timelapse. All the models have been trained on a 32GB Tesla V100 GPU. We also provide a mixed precision training which should fit smaller GPUs as well (a usual training takes ~9GB).

Environment setup

We advise the creation of a new conda environment including all necessary packages. The repository includes a requirements file. Please create and activate the new environment with

conda env create -f requirements.yml
conda activate comogan

Dataset preparation

First, download the Waymo Open Dataset from the official website. The dataset is organized in .tfrecord files, which we preprocess and split depending on metadata annotations on time of day. Once you downloaded the dataset, you should run the dump_waymo.py script. It will read and unpack the .tfrecord files, also resizing the images for training. Please run

python scripts/dump_waymo.py --load_path path/of/waymo/open/training --save_path /path/of/extracted/training/images
python scripts/dump_waymo.py --load_path path/of/waymo/open/validation --save_path /path/of/extracted/validation/images

Running those commands should result in a similar directory structure:

root
  training
    Day
      seq_code_0_im_code_0.png
      seq_code_0_im_code_1.png
      ...
      seq_code_1_im_code_0.png
      ...
  Dawn/Dusk
      ...
  Night
      ...
  validation
    Day
      ...
    Dawn/Dusk
      ...
    Night
      ...

Pretrained weights

We release a pretrained set of weights to allow reproducibility of our results. The weights are downloadable from here. Once downloaded, unpack the file in the root of the project and test them with the inference notebook.

Training

The training routine of CoMoGAN is mainly based on the CycleGAN codebase, available with details in the official repository.

To launch a default training, run

python train.py --path_data path/to/waymo/training/dir --gpus 0

You can choose on which GPUs to train with the --gpus flag. Multi-GPU is not deeply tested but it should be managed internally by Pytorch Lightning. Typically, a full training requires 13GB+ of GPU memory unless mixed precision is set. If you have a smaller GPU, please run

python train.py --path_data path/to/waymo/training/dir --gpus 0 --mixed_precision

Please note that performances on mixed precision trainings are evaluated only qualitatively.

Experiment organization

In the training routine, an unique ID will be assigned to every training. All experiments will be saved in the logs folder, which is structured in this way:

logs/
  train_ID_0
    tensorboard/default/version_0
      checkpoints
        model_35000.pth
        ...
      hparams.yaml
      tb_log_file
  train_ID_1
    ...

In the checkpoints folder, all the intermediate checkpoints will be stored. hparams.yaml contains all the hyperparameters for a given run. You can launch a tensorboard --logdir train_ID instance on training directories to visualize intermediate outputs and loss functions.

To resume a previously stopped training, running

python train.py --id train_ID --path_data path/to/waymo/training/dir --gpus 0

will load the latest checkpoint from a given train ID checkpoints directory.

Extending the code

Command line arguments

We expose command line arguments to encourage code reusability and adaptability to other datasets or models. Right now, the available options thought for extensions are:

  • --debug: Disables logging and experiment saving. Useful for testing code modifications.
  • --model: Loads a CoMoGAN model. By default, it loads CoMo-MUNIT (code is in networks folder)
  • --data_importer: Loads data from a dataset. By default, it loads waymo for the day2timelapse experiment (code is in data folder).
  • --learning_rate: Modifies learning rate, default value for CoMo-MUNIT is 1e-4.
  • --scheduler_policy: You can choose among linear os step policy, taken respectively from CycleGAN and MUNIT training routines. Default is step.
  • --decay_iters_step: For step policy, how many iterations before reducing learning rate
  • --decay_step_gamma: Regulates how much to reduce the learning rate
  • --seed: Random seed initialization

The codebase have been rewritten almost from scratch after CVPR acceptance and optimized for reproducibility, hence the seed provided could give slightly different results from the ones reported in the paper.

Changing model and dataset requires extending the networks/base_model.py and data/base_dataset.py class, respectively. Please look into CycleGAN repository for further instructions.

Model, dataset and other options

Specific hyperparameters for different models, datasets or options not changing with high frequency are embedded in munch dictionaries in the relative classes. For instance, in networks/comomunit_model.py you can find all customizable options for CoMo-MUNIT. The same is valid for data/day2timelapse_dataset.py. The options folder includes additional options on checkpoint saving intervals and logging.

Inference

Once you trained a model, you can use the infer.ipynb notebook to visualize translation results. After having launched a notebook instance, you will be required to select the train_id of the experiment. The notebook is documented and it provides widgets for sequence, checkpoint and translation selection.

You can also use the translate.py script to translate all the images inside a directory or a sequence of images to another target directory.

python scripts/translate.py --load_path path/to/waymo/validation/day/dir --save_path path/to/saving/dir --phi 3.14

Will load image from the indicated path before translating it to a night style image due to the phi set to 3.14.

  • --phi: (𝜙) is the angle of the sun with a value between [0,2𝜋], which maps to a sun elevation ∈ [+30◦,−40◦]
  • --sequence: if you want to use only certain images, you can specify a name or a keyword contained in the image's name like --sequence segment-10203656353524179475
  • --checkpoint: if your folder logs contains more than one train_ID or if you want to select an older checkpoint, you should indicate the path to the checkpoint contained in the folder with the train_ID that you want like --checkpoint logs/train_ID_0/tensorboard/default/version_0/checkpoints/model_35000.pth

Docker

You will find a Dockerfile based on the nvidia/cuda:11.0.3-base-ubuntu18.04 image with all the dependencies that you need to run and test the code. To build it and to run it :

docker build -t notebook/comogan:1.0 .
docker run -it -v /path/to/your/local/datasets/:/datasets -p 8888:8888 --gpus '"device=0"' notebook/comogan:1.0
  • --gpus: gives you the possibility to only parse the GPU that you want to use, by default, all the available GPUs are parsed.
  • -v: mount the local directory that contained your dataset
  • -p: this option is only used for the infer.ipynb notebook. If you run the notebook on a remote server, you should also use this command to tunnel the output to your computer ssh [email protected] -NL 8888:127.0.0.1:8888
Owner
Codes from Computer Vision group of RITS Team, Inria
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Fang Zhonghao 13 Nov 19, 2022