Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

Overview

DewarpNet

This repository contains the codes for DewarpNet training.

Recent Updates

  • [May, 2020] Added evaluation images and an important note about Matlab SSIM.
  • [Dec, 2020] Added OCR evaluation details.

Training

  • Prepare Data: train.txt & val.txt. Contents should be like:
1/824_8-cp_Page_0503-7Ns0001
1/824_1-cp_Page_0504-2Cw0001
  • Train Shape Network: python trainwc.py --arch unetnc --data_path ./data/DewarpNet/doc3d/ --batch_size 50 --tboard
  • Train Texture Mapping Network: python trainbm.py --arch dnetccnl --img_rows 128 --img_cols 128 --img_norm --n_epoch 250 --batch_size 50 --l_rate 0.0001 --tboard --data_path ./DewarpNet/doc3d

Inference:

  • Run: python infer.py --wc_model_path ./eval/models/unetnc_doc3d.pkl --bm_model_path ./eval/models/dnetccnl_doc3d.pkl --show

Evaluation (Image Metrics):

  • We use the same evaluation code as DocUNet. To reproduce the quantitative results reported in the paper use the images available here.

  • [Important note about Matlab version] We noticed that Matlab 2020a uses a different SSIM implementation which gives a better MS-SSIM score (0.5623). Whereas we have used Matlab 2018b. Please compare the scores according to your Matlab version.

Evaluation (OCR Metrics):

  • The 25 images used for OCR evaluation is /eval/ocr_eval/ocr_files.txt
  • The corresponding ground-truth text is given in /eval/ocr_eval/tess_gt.json
  • For the OCR errors reported in the paper we had used cv2.blur as pre-processing which gives higher error in all the cases. For convenience, we provide the updated numbers (without using blur) in the following table:
Method ED CER ED (no blur) CER (no blur)
DocUNet 1975.86 0.4656(0.263) 1671.80 0.403 (0.256)
DocUNet on Doc3D 1684.34 0.3955 (0.272) 1296.00 0.294 (0.235)
DewarpNet 1288.60 0.3136 (0.248) 1007.28 0.249 (0.236)
DewarpNet (ref) 1114.40 0.2692 (0.234) 812.48 0.204 (0.228)
  • We had used the Tesseract (v4.1.0) default configuration for evaluation with PyTesseract (v0.2.6).

Models:

  • Pre-trained models are available here. These models are captured prior to end-to-end training, thus won't give you the end-to-end results reported in Table 2 of the paper. Use the images provided above to get the exact numbers as Table 2.

Dataset:

  • The doc3D dataset can be downloaded using the scripts here.

More Stuff:

Citation:

If you use the dataset or this code, please consider citing our work-

@inproceedings{SagnikKeICCV2019, 
Author = {Sagnik Das*, Ke Ma*, Zhixin Shu, Dimitris Samaras, Roy Shilkrot}, 
Booktitle = {Proceedings of International Conference on Computer Vision}, 
Title = {DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks}, 
Year = {2019}}   

Acknowledgements:

Owner
[email protected]
Computer Vision Lab at Stony Brook University
<a href=[email protected]">
a deep learning model for page layout analysis / segmentation.

OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-

99 Dec 12, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Image processing using OpenCv

Image processing using OpenCv Write a program that opens the webcam, and the user selects one of the following on the video: ✅ If the user presses the

M.Najafi 4 Feb 18, 2022
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
CNN+Attention+Seq2Seq

Attention_OCR CNN+Attention+Seq2Seq The model and its tensor transformation are shown in the figure below It is necessary ch_ train and ch_ test the p

Tsukinousag1 2 Jul 14, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Deep Learning Chinese Word Segment

引用 本项目模型BiLSTM+CRF参考论文:http://www.aclweb.org/anthology/N16-1030 ,IDCNN+CRF参考论文:https://arxiv.org/abs/1702.02098 构建 安装好bazel代码构建工具,安装好tensorflow(目前本项目需

2.1k Dec 23, 2022
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022