CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

Related tags

Deep LearningDSL
Overview

Python >=3.8 PyTorch >=1.8.0 mmcv-full >=1.3.10

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection

DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detection (SSOD).

This code is established on mmdetection and is only used for research.

Instruction

Install dependencies

pytorch>=1.8.0
cuda 10.2
python>=3.8
mmcv-full 1.3.10

Download ImageNet pre-trained models

Download resnet50_rla_2283.pth (Google) resnet50_rla_2283.pth (Baidu, extract code: 5lf1) for later DSL training.

Training

For dynamically labeling the unlabeled images, original COCO dataset and VOC dataset will be converted to (DSL-style) datasets where annotations are saved in different json files and each image has its own annotation file. In addition, this implementation is slightly different from the original paper, where we clean the code, merge some data flow for speeding up training, add PatchShuffle also to the labeled images, and remove MetaNet for speeding up training as well, the final performance is similar as the original paper.

Clone this project & Create data root dir

cd ${project_root_dir}
git clone https://github.com/chenbinghui1/DSL.git
mkdir data
mkdir ori_data

#resulting format
#${project_root_dir}
#      - ori_data
#      - data
#      - DSL
#        - configs
#        - ...

For COCO Partially Labeled Data protocol

1. Download coco dataset and unzip it

mkdir ori_data/coco
cd ori_data/coco

wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/unlabeled2017.zip

unzip annotations_trainval2017.zip -d .
unzip -q train2017.zip -d .
unzip -q val2017.zip -d .
unzip -q unlabeled2017.zip -d .

# resulting format
# ori_data/coco
#   - train2017
#     - xxx.jpg
#   - val2017
#     - xxx.jpg
#   - unlabled2017
#     - xxx.jpg
#   - annotations
#     - xxx.json
#     - ...

2. Convert coco to semicoco dataset

Use (tools/coco_convert2_semicoco_json.py) to generate the DSL-style coco data dir, i.e., semicoco/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/coco_convert2_semicoco_json.py --input ${project_root_dir}/ori_data/coco --output ${project_root_dir}/data/semicoco

You will obtain ${project_root_dir}/data/semicoco/ dir

3. Prepare partially labeled data

Use (data_list/coco_semi/prepare_dta.py) to generate the partially labeled data list_file. Now we take 10% labeled data as example

cd data_list/coco_semi/
python3 prepare_dta.py --percent 10 --root ${project_root_dir}/ori_data/coco --seed 2

You will obtain (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}.json) (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabel.json) (data_list/coco_semi/semi_supervised/instances_train2017.json) (data_list/coco_semi/semi_supervised/instances_val2017.json)

These above files are only used as image_list.

4. Train supervised baseline model

Train base model via (demo/model_train/baseline_coco.sh); configs are in dir (configs/fcos_semi/); Before running this script please change the corresponding file path in both script and config files.

cd ${project_root_dir}/DSL
./demo/model_train/baseline_coco.sh

5. Generate initial pseudo-labels for unlabeled images(1/2)

Generate the initial pseudo-labels for unlabeled images via (tools/inference_unlabeled_coco_data.sh): please change the corresponding list file path of unlabeled data in the config file, and the model path in tools/inference_unlabeled_coco_data.sh.

./tools/inference_unlabeled_coco_data.sh

Then you will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json) which contains the pseudo-labels.

6. Generate initial pseudo-labels for unlabeled images(2/2)

Use (tools/generate_unlabel_annos_coco.py) to convert the produced (epoch_xxx.pth-unlabeled.bbox.json) above to DSL-style annotations

python3 tools/generate_unlabel_annos_coco.py \ 
          --input_path workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json \
          --input_list data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabeled.json \
          --cat_info ${project_root_dir}/data/semicoco/mmdet_category_info.json \
          --thres 0.1

You will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json_thres0.1_annos/) dir which contains the DSL-style annotations.

7. DSL Training

Use (demo/model_train/unlabel_train.sh) to train our semi-supervised algorithm. Before training, please change the corresponding paths in config file and shell script.

./demo/model_train/unlabel_train.sh

For COCO Fully Labeled Data protocol

The overall steps are similar as steps in above Partially Labeled Data guaidline. The additional steps to do is to download and organize the new unlabeled data.

1. Organize the new images

Put all the jpg images into the generated DSL-style semicoco data dir like: semicoco/unlabel_images/full/xx.jpg;

cd ${project_root_dir}
cp ori_data/coco/unlabled2017/* data/semicoco/unlabel_images/full/

2. Download the corresponding files

Download (STAC_JSON.tar.gz) and unzip it; move (coco/annotations/instances_unlabeled2017.json) to (data_list/coco_semi/semi_supervised/) dir

cd ${project_root_dir}/ori_data
wget https://storage.cloud.google.com/gresearch/ssl_detection/STAC_JSON.tar
tar -xf STAC_JSON.tar.gz

# resulting files
# coco/annotations/instances_unlabeled2017.json
# coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json
# voc/VOCdevkit/VOC2007/instances_diff_test.json
# voc/VOCdevkit/VOC2007/instances_diff_trainval.json
# voc/VOCdevkit/VOC2007/instances_test.json
# voc/VOCdevkit/VOC2007/instances_trainval.json
# voc/VOCdevkit/VOC2012/instances_diff_trainval.json
# voc/VOCdevkit/VOC2012/instances_trainval.json

cp coco/annotations/instances_unlabeled2017.json ${project_root_dir}/DSL/data_list/coco_semi/semi_supervised/

3. Train as steps4-steps7 which are used in Partially Labeled data protocol

Change the corresponding paths before training.

For VOC dataset

1. Download VOC data

Download VOC dataset to dir xx and unzip it, we will get (VOCdevkit/)

cd ${project_root_dir}/ori_data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
tar -xf VOCtrainval_11-May-2012.tar

# resulting format
# ori_data/
#   - VOCdevkit
#     - VOC2007
#       - Annotations
#       - JPEGImages
#       - ...
#     - VOC2012
#       - Annotations
#       - JPEGImages
#       - ...

2. Convert voc to semivoc dataset

Use (tools/voc_convert2_semivoc_json.py) to generate DSL-style voc data dir, i.e., semivoc/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/voc_convert2_semivoc_json.py --input ${project_root_dir}/ori_data/VOCdevkit --output ${project_root_dir}/data/semivoc

And then use (tools/dataset_converters/pascal_voc.py) to convert the original voc list file to coco style file for evaluating VOC performances under COCO 'bbox' metric.

python3 tools/dataset_converters/pascal_voc.py ${project_root_dir}/ori_data/VOCdevkit -o data_list/voc_semi/ --out-format coco

You will obtain the list files in COCO-Style in dir: data_list/voc_semi/. These files are only used as val files, please refer to (configs/fcos_semi/voc/xx.py)

3. Combine with coco20class images

Copy (instances_unlabeledtrainval20class.json) to (data_list/voc_semi/) dir; and then run script (data_list/voc_semi/combine_coco20class_voc12.py) to produce the additional unlabel set with coco20classes.

cp ${project_root_dir}/ori_data/coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json data_list/voc_semi/
cd data_list/voc_semi
python3 data_list/voc_semi/combine_coco20class_voc12.py \
                --cocojson instances_unlabeledtrainval20class.json \
                --vocjson voc12_trainval.json \
                --cocoimage_path ${project_root_dir}/data/semicoco/images/full \
                --outtxt_path ${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/ \
                --outimage_path ${project_root_dir}/data/semivoc/unlabel_images/full
cd ../..

You will obtain the corresponding list file(.json): (voc12_trainval_coco20class.json), and the corresponding coco20classes images will be copyed to (${project_root_dir}/data/semivoc/unlabeled_images/full/) and the list file(.txt) will also be generated at (${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/voc12_trainval_coco20class.txt)

4. Train as steps4-steps7 which are used in Partially Labeled data protocol

Please change the corresponding paths before training, and refer to configs/fcos_semi/voc/xx.py.

Testing

Please refer to (tools/semi_dist_test.sh).

./tools/semi_dist_test.sh

Acknowledgement

Owner
Bhchen
Bhchen
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023