[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Related tags

Data AnalysisNCL
Overview

Nested Collaborative Learning for Long-Tailed Visual Recognition

This repository is the official PyTorch implementation of the paper in CVPR 2022:

Nested Collaborative Learning for Long-Tailed Visual Recognition
Jun Li, Zichang Tan, Jun Wan, Zhen Lei, Guodong Guo
[PDF]  

 

Main requirements

torch >= 1.7.1 #This is the version I am using, other versions may be accteptable, if there is any problem, go to https://pytorch.org/get-started/previous-versions/ to get right version(espicially CUDA) for your machine.
tensorboardX >= 2.1 #Visualization of the training process.
tensorflow >= 1.14.0 #convert long-tailed cifar datasets from tfrecords to jpgs.
Python 3.6 #This is the version I am using, other versions(python 3.x) may be accteptable.

Detailed requirement

pip install -r requirements.txt

Prepare datasets

This part is mainly based on https://github.com/zhangyongshun/BagofTricks-LT

We provide three datasets in this repo: long-tailed CIFAR (CIFAR-LT), long-tailed ImageNet (ImageNet-LT), iNaturalist 2018 (iNat18) and Places_LT.

The detailed information of these datasets are shown as follows:

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18 Places_LT
Imbalance factor
100 50 100 50
Training images 12,406 13,996 10,847 12,608 11,5846 437,513 62,500
Classes 50 50 100 100 1,000 8,142 365
Max images 5,000 5,000 500 500 1,280 1,000 4,980
Min images 50 100 5 10 5 2 5
Imbalance factor 100 50 100 50 256 500 996
-"Max images" and "Min images" represents the number of training images in the largest and smallest classes, respectively.

-"CIFAR-10-LT-100" means the long-tailed CIFAR-10 dataset with the imbalance factor beta = 100.

-"Imbalance factor" is defined as: beta = Max images / Min images.

  • Data format

The annotation of a dataset is a dict consisting of two field: annotations and num_classes. The field annotations is a list of dict with image_id, fpath, im_height, im_width and category_id.

Here is an example.

{
    'annotations': [
                    {
                        'image_id': 1,
                        'fpath': '/data/iNat18/images/train_val2018/Plantae/7477/3b60c9486db1d2ee875f11a669fbde4a.jpg',
                        'im_height': 600,
                        'im_width': 800,
                        'category_id': 7477
                    },
                    ...
                   ]
    'num_classes': 8142
}
  • CIFAR-LT

    Cui et al., CVPR 2019 firstly proposed the CIFAR-LT. They provided the download link of CIFAR-LT, and also the codes to generate the data, which are in TensorFlow.

    You can follow the steps below to get this version of CIFAR-LT:

    1. Download the Cui's CIFAR-LT in GoogleDrive or Baidu Netdisk (password: 5rsq). Suppose you download the data and unzip them at path /downloaded/data/.
    2. Run tools/convert_from_tfrecords, and the converted CIFAR-LT and corresponding jsons will be generated at /downloaded/converted/.
    # Convert from the original format of CIFAR-LT
    python tools/convert_from_tfrecords.py  --input_path /downloaded/data/ --output_path /downloaded/converted/
  • ImageNet-LT

    You can use the following steps to convert from the original images of ImageNet-LT.

    1. Download the original ILSVRC-2012. Suppose you have downloaded and reorgnized them at path /downloaded/ImageNet/, which should contain two sub-directories: /downloaded/ImageNet/train and /downloaded/ImageNet/val.
    2. Directly replace the data root directory in the file dataset_json/ImageNet_LT_train.json, dataset_json/ImageNet_LT_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/ImageNet_LT_train.json --find_root /media/ssd1/lijun/ImageNet_LT --replaces_to /downloaded/ImageNet
    
    python tools/replace_path.py --json_file dataset_json/ImageNet_LT_val.json --find_root /media/ssd1/lijun/ImageNet_LT --replaces_to /downloaded/ImageNet
    
  • iNat18

    You can use the following steps to convert from the original format of iNaturalist 2018.

    1. The images and annotations should be downloaded at iNaturalist 2018 firstly. Suppose you have downloaded them at path /downloaded/iNat18/.
    2. Directly replace the data root directory in the file dataset_json/iNat18_train.json, dataset_json/iNat18_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/iNat18_train.json --find_root /media/ssd1/lijun/inaturalist2018/train_val2018 --replaces_to /downloaded/iNat18
    
    python tools/replace_path.py --json_file dataset_json/iNat18_val.json --find_root /media/ssd1/lijun/inaturalist2018/train_val2018 --replaces_to /downloaded/iNat18
    
  • Places_LT

    You can use the following steps to convert from the original format of Places365-Standard.

    1. The images and annotations should be downloaded at Places365-Standard firstly. Suppose you have downloaded them at path /downloaded/Places365/.
    2. Directly replace the data root directory in the file dataset_json/Places_LT_train.json, dataset_json/Places_LT_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/Places_LT_train.json --find_root /media/ssd1/lijun/data/places365_standard --replaces_to /downloaded/Places365
    
    python tools/replace_path.py --json_file dataset_json/Places_LT_val.json --find_root /media/ssd1/lijun/data/places365_standard --replaces_to /downloaded/Places365
    

Usage

First, prepare the dataset and modify the relevant paths in config/CIFAR100/cifar100_im100_NCL.yaml

Parallel training with DataParallel

1, Train
# Train long-tailed CIFAR-100 with imbalanced ratio of 100. 
# `GPUs` are the GPUs you want to use, such as '0' or`0,1,2,3`.
bash data_parallel_train.sh /home/lijun/papers/NCL/config/CIFAR/CIFAR100/cifar100_im100_NCL.yaml 0

Distributed training with DistributedDataParallel

Note that if you choose to train with DistributedDataParallel, the BATCH_SIZE in .yaml indicates the number on each GPU!

Default training batch-size: CIFAR: 64; ImageNet_LT: 256; Places_LT: 256; iNat18: 512.

e.g. if you want to train NCL with batch-size=512 on 8 GPUS, you should set the BATCH_SIZE in .yaml to 64.

1, Change the NCCL_SOCKET_IFNAME in run_with_distributed_parallel.sh to [your own socket name]. 
export NCCL_SOCKET_IFNAME = [your own socket name]

2, Train
# Train inaturalist2018. 
# `GPUs` are the GPUs you want to use, such as `0,1,2,3,4,5,6,7`.
# `NUM_GPUs` are the number of GPUs you want to use. If you set `GPUs` to `0,1,2,3,4,5,6,7`, then `NUM_GPUs` should be `8`.
bash distributed_data_parallel_train.sh config/iNat18/inat18_NCL.yaml 8 0,1,2,3,4,5,6,7

Citation

If you find our work inspiring or use our codebase in your research, please consider giving a star and a citation.

@inproceedings{li2022nested,
  title={Nested Collaborative Learning for Long-Tailed Visual Recognition},
  author={Li, Jun and Tan, Zichang and Wan, Jun and Lei, Zhen and Guo, Guodong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Acknowledgements

This is a project based on Bag of tricks.

The data augmentations in dataset are based on PaCo

The MOCO in constrstive learning is based on MOCO

Owner
Jun Li
Jun Li
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Manage large and heterogeneous data spaces on the file system.

signac - simple data management The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, and reproduc

Glotzer Group 109 Dec 14, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Saiem Gilani 37 Dec 27, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022