Dataset and baseline code for the VocalSound dataset (ICASSP2022).

Overview

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition

Introduction

VocalSound Poster

VocalSound is a free dataset consisting of 21,024 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. The VocalSound dataset also contains meta information such as speaker age, gender, native language, country, and health condition.

This repository contains the official code of the data preparation and baseline experiment in the ICASSP paper VocalSound: A Dataset for Improving Human Vocal Sounds Recognition (Yuan Gong, Jin Yu, and James Glass; MIT & Signify). Specifically, we provide an extremely simple one-click Google Colab script Open In Colab for the baseline experiment, no GPU / local data downloading is needed.

The dataset is ideal for:

  • Build vocal sound recognizer.
  • Research on removing model bias on various speaker groups.
  • Evaluate pretrained models (e.g., those trained with AudioSet) on vocal sound classification to check their generalization ability.
  • Combine with existing large-scale general audio dataset to improve the vocal sound recognition performance.

Citing

Please cite our paper(s) if you find the VocalSound dataset and code useful. The first paper proposes introduces the VocalSound dataset and the second paper describes the training pipeline and model we used for the baseline experiment.

@INPROCEEDINGS{gong_vocalsound,
  author={Gong, Yuan and Yu, Jin and Glass, James},
  booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition}, 
  year={2022},
  pages={151-155},
  doi={10.1109/ICASSP43922.2022.9746828}}
@ARTICLE{gong_psla, 
    author={Gong, Yuan and Chung, Yu-An and Glass, James},
    title={PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation}, 
    journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},  
    year={2021}, 
    doi={10.1109/TASLP.2021.3120633}
}

Download VocalSound

The VocalSound dataset can be downloaded as a single .zip file:

Sample Recordings (Listen to it without downloading)

VocalSound 44.1kHz Version (4.5 GB)

VocalSound 16kHz Version (1.7 GB, used in our baseline experiment)

(Mirror Links) 腾讯微云下载链接: 试听24个样本16kHz版本44.1kHz版本

If you plan to reproduce our baseline experiments using our Google Colab script, you do NOT need to download it manually, our script will download and process the 16kHz version automatically.

Creative Commons License
The VocalSound dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Dataset Details

data
├──readme.txt
├──class_labels_indices_vs.csv # include label code and name information
├──audio_16k
│  ├──f0003_0_cough.wav # female speaker, id=0003, 0=first collection (most spks only record once, but there are exceptions), cough
│  ├──f0003_0_laughter.wav
│  ├──f0003_0_sigh.wav
│  ├──f0003_0_sneeze.wav
│  ├──f0003_0_sniff.wav
│  ├──f0003_0_throatclearing.wav
│  ├──f0004_0_cough.wav # data from another female speaker 0004
│   ... (21024 files in total)
│   
├──audio_44k
│    # same recordings with those in data/data_16k, but are no downsampled
│   ├──f0003_0_cough.wav
│    ... (21024 files in total)
│
├──datafiles  # json datafiles that we use in our baseline experiment, you can ignore it if you don't use our training pipeline
│  ├──all.json  # all data
│  ├──te.json  # test data
│  ├──tr.json  # training data
│  ├──val.json  # validation data
│  └──subtest # subset of the test set, for fine-grained evaluation
│     ├──te_age1.json  # age [18-25]
│     ├──te_age2.json  # age [26-48]
│     ├──te_age3.json  # age [49-80]
│     ├──te_female.json
│     └──te_male.json
│
└──meta  # Meta information of the speakers [spk_id, gender, age, country, native language, health condition (no=no problem)]
   ├──all_meta.json  # all data
   ├──te_meta.json  # test data
   ├──tr_meta.json  # training data
   └──val_meta.json  # validation data

Baseline Experiment

Option 1. One-Click Google Colab Experiment Open In Colab

We provide an extremely simple one-click Google Colab script for the baseline experiment.

What you need:

  • A free google account with Google Drive free space > 5Gb
    • A (paid) Google Colab Pro plan could speed up training, but is not necessary. Free version can run the script, just a bit slower.

What you don't need:

  • Download VocalSound manually (The Colab script download it to your Google Drive automatically)
  • GPU or any other hardware (Google Colab provides free GPUs)
  • Any enviroment setting and package installation (Google Colab provides a ready-to-use environment)
  • A specific operating system (You only need a web browser, e.g., Chrome)

Please Note

  • This script is slightly different with our local code, but the performance is not impacted.
  • Free Google Colab might be slow and unstable. In our test, it takes ~5 minutes to train the model for one epoch with a free Colab account.

To run the baseline experiment

  • Make sure your Google Drive is mounted. You don't need to do it by yourself, but Google Colab will ask permission to acess your Google Drive when you run the script, please allow it if you want to use Google Drive.
  • Make sure GPU is enabled for Colab. To do so, go to the top menu > Edit > Notebook settings and select GPU as Hardware accelerator.
  • Run the script. Just press Ctrl+F9 or go to runtime menu on top and click "run all" option. That's it.

Option 2. Run Experiment Locally

We also provide a recipe for local experiments.

Compared with the Google Colab online script, it has following advantages:

  • It can be faster and more stable than online Google Colab (free version) if you have fast GPUs.
  • It is basically the original code we used for our paper, so it should reproduce the exact numbers in the paper.

Step 1. Clone or download this repository and set it as the working directory, create a virtual environment and install the dependencies.

cd vocalsound/ 
python3 -m venv venv-vs
source venv-vs/bin/activate
pip install -r requirements.txt 

Step 2. Download the VocalSound dataset and process it.

cd data/
wget https://www.dropbox.com/s/c5ace70qh1vbyzb/vs_release_16k.zip?dl=0 -O vs_release_16k.zip
unzip vs_release_16k.zip
cd ../src
python prep_data.py

# you can provide a --data_dir augment if you download the data somewhere else
# python prep_data.py --data_dir absolute_path/data

Step 3. Run the baseline experiment

chmod 777 run.sh
./run.sh

# or slurm user
#sbatch run.sh

We test both options before this release, you should get similar accuracies.

Accuracy (%) Colab Script Open In Colab Local Script ICASSP Paper
Validation Set 91.1 90.2 90.1±0.2
All Test Set 91.6 90.6 90.5±0.2
Test Age 18-25 93.4 92.3 91.5±0.3
Test Age 26-48 90.8 90.0 90.1±0.2
Test Age 49-80 92.2 90.2 90.9±1.6
Test Male 89.8 89.6 89.2±0.5
Test Female 93.4 91.6 91.9±0.1
Model Implementation torchvision EfficientNet PSLA EfficientNet PSLA EfficientNet
Batch Size 80 100 100
GPU Google Colab Free 4X Titan 4X Titan
Training Time (30 Epochs) ~2.5 Hours ~1 Hour ~1 Hour

Contact

If you have a question, please bring up an issue (preferred) or send me an email [email protected].

Owner
Yuan Gong
Postdoc, MIT CSAIL
Yuan Gong
Some utils for auto speech recognition

About Some utils for auto speech recognition. Utils Util Description Script Reset audio Reset sample rate, sample width, etc of audios.

1 Jan 24, 2022
Convert complex chord names to midi notes

ezchord Simple python script that can convert complex chord names to midi notes Prerequisites pip install midiutil Usage ./ezchord.py Dmin7 G7 C timi

Alex Zhang 2 Dec 20, 2022
spafe: Simplified Python Audio-Features Extraction

spafe aims to simplify features extractions from mono audio files. The library can extract of the following features: BFCC, LFCC, LPC, LPCC, MFCC, IMFCC, MSRCC, NGCC, PNCC, PSRCC, PLP, RPLP, Frequenc

Ayoub Malek 310 Jan 01, 2023
Generating a structured library of .wav samples with Python.

sample-library Scripts for generating a structured sample library with Python Requires Docker about Samples are written to wave files in lib/. Differe

Ben Mangold 1 Nov 11, 2021
An Amazon Music client for Linux (unpretentious)

Amusiz An Amazon Music client for Linux (unpretentious) ↗️ Install You can install Amusiz in multiple ways, choose your favorite. 🚀 AppImage Here you

Mirko Brombin 25 Nov 08, 2022
Delta TTA(Text To Audio) SoftWare

Text-To-Audio-Windows Delta TTA(Text To Audio) SoftWare Info You Can Use It For Convert Your Text To Audio File You Just Write Your Text And Your End

Delta Inc. 2 Dec 14, 2021
controls volume using hand gestures

controls volume using hand gestures

1 Oct 11, 2021
Conferencing Speech Challenge

ConferencingSpeech 2021 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech challenge. For more detai

73 Nov 29, 2022
A Python library and tools AUCTUS A6 based radios.

A Python library and tools AUCTUS A6 based radios.

Jonathan Hart 6 Nov 23, 2022
A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

921 Jan 05, 2023
Voicefixer aims at the restoration of human speech regardless how serious its degraded.

Voicefixer aims at the restoration of human speech regardless how serious its degraded.

Leo 324 Dec 26, 2022
Pyrogram bot to automate streaming music in voice chats

Pyrogram bot to automate streaming music in voice chats Help If you face an error, want to discuss this project or get support for it, join it's group

Roj 124 Oct 21, 2022
Stream Music 🎵 𝘼 𝙗𝙤𝙩 𝙩𝙝𝙖𝙩 𝙘𝙖𝙣 𝙥𝙡𝙖𝙮 𝙢𝙪𝙨𝙞𝙘 𝙤𝙣 𝙏𝙚𝙡𝙚𝙜𝙧𝙖𝙢 𝙂𝙧𝙤𝙪𝙥 𝙖𝙣𝙙 𝘾𝙝𝙖𝙣𝙣𝙚𝙡 𝙑𝙤𝙞𝙘𝙚 𝘾𝙝𝙖𝙩𝙨 𝘼𝙫𝙖𝙞𝙡?

Stream Music 🎵 𝘼 𝙗𝙤𝙩 𝙩𝙝𝙖𝙩 𝙘𝙖𝙣 𝙥𝙡𝙖𝙮 𝙢𝙪𝙨𝙞𝙘 𝙤𝙣 𝙏𝙚𝙡𝙚𝙜𝙧𝙖𝙢 𝙂𝙧𝙤𝙪𝙥 𝙖𝙣𝙙 𝘾𝙝𝙖𝙣𝙣𝙚𝙡 𝙑𝙤𝙞𝙘𝙚 𝘾𝙝𝙖𝙩𝙨 𝘼𝙫𝙖𝙞𝙡?

Sadew Jayasekara 15 Nov 12, 2022
Music bot of # Owner

Pokimane-Music Music bot of # Owner How To Host The easiest way to deploy this Bot Support Channel :- TeamDlt Support Group :- TeamDlt Please fork thi

5 Dec 23, 2022
:notes: Cross-platform music player

Exaile Exaile is a music player with a simple interface and powerful music management capabilities. Features include automatic fetching of album art,

Exaile 327 Dec 19, 2022
Synchronize a local directory of songs' (MP3, MP4) metadata (genre, ratings) and playlists with a Plex server.

PlexMusicSync Synchronize a local directory of songs' (MP3, MP4) metadata (genre, ratings) and playlists (m3u, m3u8) with a Plex server. The song file

Tom Goetz 9 Jul 07, 2022
Mousai is a simple application that can identify song like Shazam

Mousai is a simple application that can identify song like Shazam. It saves the artist, album, and title of the identified song in a JSON file.

Dave Patrick 662 Jan 07, 2023
Python I/O for STEM audio files

stempeg = stems + ffmpeg Python package to read and write STEM audio files. Technically, stems are audio containers that combine multiple audio stream

Fabian-Robert Stöter 72 Dec 23, 2022
Gateware for the Terasic/Arrow DECA board, to become a USB2 high speed audio interface

DECA USB Audio Interface DECA based USB 2.0 High Speed audio interface Status / current limitations enumerates as class compliant audio device on Linu

Hans Baier 16 Mar 21, 2022
Marsyas - Music Analysis, Retrieval and Synthesis for Audio Signals

Welcome to MARSYAS. MARSYAS is a software framework for rapid prototyping of audio applications, with flexibility and extensibility as primary concer

Marsyas Developers Group 364 Oct 31, 2022