Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Overview

Projeto-Final-Salario-dos-Brasileiros

Esquema do Projeto

Descrição

Todas as equipes deverão entregar as mesmas especificações, de acordo com o seu respectivo tema. Vocês deverão aplicar os conceitos vistos durante o curso para tratar, organizar e modelar os dados de 2 datasets escolhidos por vocês seguindo o tema de sua equipe. Obrigatoriamente deverá conter as tecnologias Google Cloud Platform(Cloud Storage), Python, Pandas, PySpark, SparkSQL, Apache Beam*, Data Studio, Big Query.

Apresentação

  • A apresentação do trabalho se dará da seguinte maneira:
  • Cada grupo deverá ser totalmente responsável pela forma pela qual vai interpretar o dataset, apresentando suposições e conclusões dos dados. Todas essas situações devem ser explicadas.
  • Deverá iniciar pela apresentação do dataset, informando de qual local foi baixado o dataset e quais as principais informações sobre o mesmo.
  • Deverá apresentar as funções e ferramentas utilizadas no código.
  • Explicar o porquê do dataset escolhido.
  • Todos os componentes deverão se apresentar.
  • Deverá ser usado termos técnicos, evitando o uso de gírias ou expressões coloquiais e/ou culturais.
  • Cada grupo terá 60 minutos para se apresentar.
  • A ordem da apresentação será comunicada pelos professores próximo à data de apresentação.

Principais Habilidades a serem avaliadas

  • Oralidade e comunicação em público.
  • Capacidade de argumentação
  • Habilidade de codificação em Python
  • Habilidade de interpretação e análise de dados.
  • Capacidade de implementação de códigos utilizando as bibliotecas Pandas e PySpark.
  • Capacidade de implementação de consultas utilizando a linguagem SQL.
  • Capacidade Analítica e Interpretativa.

REQUISITOS OBRIGATÓRIOS

  • Obrigatoriamente os datasets devem ter formatos diferentes (CSV / Json / Parquet / Sql / NoSql) e 1 deles obrigatoriamente tem que ser em CSV.
  • Operações com Pandas (limpezas , transformações e normalizações)
  • Operações usando PySpark com a descrição de cada uma das operações.
  • Operações utilizando o SparkSQL com a descrição de cada umas das operações.
  • Os datasets utilizados podem ser em lingua estrangeira , mas devem ao final terem seus dados/colunas exibidos na lingua PT-BR
  • os datasets devem ser salvos e operados em armazenamento cloud obrigatoriamente dentro da plataforma GCP (não pode ser usado Google drive ou armazenamento alheio ao google)
  • os dados tratados devem ser armazenados também em GCP, mas obrigatoriamente em um datalake(Gstorage ) , DW(BigQuery) ou em ambos.
  • Deve ser feito análises dentro do Big Query utilizando a linguagem padrão SQL com a descrição das consultas feitas.
  • Deve ser criado no datastudio um dash board simples para exibição gráfica dos dados tratados trazendo insights importantes
  • E deve ser demonstrado em um workflow simples (gráfico) as etapas de ETL.

REQUISITOS DESEJÁVEIS

  • Implementar captura e ingestão de dados por meio de uma PIPELINE com modelo criado em apache beam usando o dataflow para o work
  • Criar plotagens usando pandas para alguns insights durante o processo de Transformação
  • Por meio de uma PIPELINE fazer o carregamento dos dados normalizados diretamente para um DW ou DataLake ou ambos
  • Montar um relatório completo com os insights que justificam todo o processo de ETL utilizado

Diagrama da arquitetura do pipeline de dados (ELT)

1639062920753

Dashboards

image

Acesso ao Dashboard

https://datastudio.google.com/reporting/a1848536-d356-4c2b-b712-5d6777962fcb/page/p_wewachuqpc?authuser=1

Owner
Débora Mendes de Azevedo
Débora Mendes de Azevedo
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

Nicolai Haaber Junge 1 Oct 20, 2021
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022