Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Overview

Projeto-Final-Salario-dos-Brasileiros

Esquema do Projeto

Descrição

Todas as equipes deverão entregar as mesmas especificações, de acordo com o seu respectivo tema. Vocês deverão aplicar os conceitos vistos durante o curso para tratar, organizar e modelar os dados de 2 datasets escolhidos por vocês seguindo o tema de sua equipe. Obrigatoriamente deverá conter as tecnologias Google Cloud Platform(Cloud Storage), Python, Pandas, PySpark, SparkSQL, Apache Beam*, Data Studio, Big Query.

Apresentação

  • A apresentação do trabalho se dará da seguinte maneira:
  • Cada grupo deverá ser totalmente responsável pela forma pela qual vai interpretar o dataset, apresentando suposições e conclusões dos dados. Todas essas situações devem ser explicadas.
  • Deverá iniciar pela apresentação do dataset, informando de qual local foi baixado o dataset e quais as principais informações sobre o mesmo.
  • Deverá apresentar as funções e ferramentas utilizadas no código.
  • Explicar o porquê do dataset escolhido.
  • Todos os componentes deverão se apresentar.
  • Deverá ser usado termos técnicos, evitando o uso de gírias ou expressões coloquiais e/ou culturais.
  • Cada grupo terá 60 minutos para se apresentar.
  • A ordem da apresentação será comunicada pelos professores próximo à data de apresentação.

Principais Habilidades a serem avaliadas

  • Oralidade e comunicação em público.
  • Capacidade de argumentação
  • Habilidade de codificação em Python
  • Habilidade de interpretação e análise de dados.
  • Capacidade de implementação de códigos utilizando as bibliotecas Pandas e PySpark.
  • Capacidade de implementação de consultas utilizando a linguagem SQL.
  • Capacidade Analítica e Interpretativa.

REQUISITOS OBRIGATÓRIOS

  • Obrigatoriamente os datasets devem ter formatos diferentes (CSV / Json / Parquet / Sql / NoSql) e 1 deles obrigatoriamente tem que ser em CSV.
  • Operações com Pandas (limpezas , transformações e normalizações)
  • Operações usando PySpark com a descrição de cada uma das operações.
  • Operações utilizando o SparkSQL com a descrição de cada umas das operações.
  • Os datasets utilizados podem ser em lingua estrangeira , mas devem ao final terem seus dados/colunas exibidos na lingua PT-BR
  • os datasets devem ser salvos e operados em armazenamento cloud obrigatoriamente dentro da plataforma GCP (não pode ser usado Google drive ou armazenamento alheio ao google)
  • os dados tratados devem ser armazenados também em GCP, mas obrigatoriamente em um datalake(Gstorage ) , DW(BigQuery) ou em ambos.
  • Deve ser feito análises dentro do Big Query utilizando a linguagem padrão SQL com a descrição das consultas feitas.
  • Deve ser criado no datastudio um dash board simples para exibição gráfica dos dados tratados trazendo insights importantes
  • E deve ser demonstrado em um workflow simples (gráfico) as etapas de ETL.

REQUISITOS DESEJÁVEIS

  • Implementar captura e ingestão de dados por meio de uma PIPELINE com modelo criado em apache beam usando o dataflow para o work
  • Criar plotagens usando pandas para alguns insights durante o processo de Transformação
  • Por meio de uma PIPELINE fazer o carregamento dos dados normalizados diretamente para um DW ou DataLake ou ambos
  • Montar um relatório completo com os insights que justificam todo o processo de ETL utilizado

Diagrama da arquitetura do pipeline de dados (ELT)

1639062920753

Dashboards

image

Acesso ao Dashboard

https://datastudio.google.com/reporting/a1848536-d356-4c2b-b712-5d6777962fcb/page/p_wewachuqpc?authuser=1

Owner
Débora Mendes de Azevedo
Débora Mendes de Azevedo
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
Methylation/modified base calling separated from basecalling.

Remora Methylation/modified base calling separated from basecalling. Remora primarily provides an API to call modified bases for basecaller programs s

Oxford Nanopore Technologies 72 Jan 05, 2023