A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

Related tags

Deep Learningbrave
Overview

BraVe

This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

The model provided in this package was implemented based on the internal model that was used to compute results for the accompanying paper. It achieves comparable results on the evaluation tasks when evaluated side-by-side. Not all details are guaranteed to be identical though, and some results may differ from those given in the paper. In particular, this implementation does not provide the option to train with optical flow.

We provide a selection of pretrained checkpoints in the table below, which can directly be evaluated against HMDB 51 with the evaluation tools this package. These are exactly the checkpoints that were used to provide the numbers in the accompanying paper, and were not trained with the exact trainer given in this package. For details on training a model with this package, please see the end of this readme.

In the table below, the different configurations are represented by using e.g. V/A for video (narrow view) to audio (broad view), or V/F for a narrow view containing video, and a broad view containing optical flow.

The backbone in each case is TSMResnet, with a given width multiplier (please see the accompanying paper for further details). For all of the given numbers below, the SVM regularization constant used is 0.0001. For HMDB 51, the average is given in brackets, followed by the top-1 percentages for each of the splits.

Views Architecture HMDB51 UCF-101 K600 Trained with this package Checkpoint
V/AF TSM (1X) (69.2%) 71.307%, 68.497%, 67.843% 92.9% 69.2% download
V/AF TSM (2X) (69.9%) 72.157%, 68.432%, 69.02% 93.2% 70.2% download
V/A TSM (1X) (69.4%) 70.131%, 68.889%, 69.085% 93.0% 70.6% download
V/VVV TSM (1X) (65.4%) 66.797%, 63.856%, 65.425% 92.6% 70.8% download

Reproducing results from the paper

This package provides everything needed to evaluate the above checkpoints against HMDB 51. It supports Python 3.7 and above.

To get started, we recommend using a clean virtualenv. You may then install the brave package directly from GitHub using,

pip install git+https://github.com/deepmind/brave.git

A pre-processed version of the HMDB 51 dataset can be downloaded using the following command. It requires that both ffmpeg and unrar are available. The following will download the dataset to /tmp/hmdb51/, but any other location would also work.

  python -m brave.download_hmdb --output_dir /tmp/hmdb51/

To evaluate a checkpoint downloaded from the above table, the following may be used. The dataset shards arguments should be set to match the paths used above.

  python -m brave.evaluate_video_embeddings \
    --checkpoint_path <path/to/downloaded/checkpoint>.npy \
    --train_dataset_shards '/tmp/hmdb51/split_1/train/*' \
    --test_dataset_shards '/tmp/hmdb51/split_1/test/*' \
    --svm_regularization 0.0001 \
    --batch_size 8

Note that any of the three splits can be evaluated by changing the dataset split paths. To run this efficiently using a GPU, it is also necessary to install the correct version of jaxlib. To install jaxlib with support for cuda 10.1 on linux, the following install should be sufficient, though other precompiled packages may be found through the JAX documentation.

  pip install https://storage.googleapis.com/jax-releases/cuda101/jaxlib-0.1.69+cuda101-cp39-none-manylinux2010_x86_64.whl

Depending on the available GPU memory available, the batch_size parameter may be tuned to obtain better performance, or to reduce the required GPU memory.

Training a network

This package may also be used to train a model from scratch using jaxline. In order to try this, first ensure the configuration is set appropriately by modifying brave/config.py. At minimum, it would also be necessary to choose an appropriate global batch size (by default, the setting of 512 is likely too large for any single-machine training setup). In addition, a value must be set for dataset_shards. This should contain the paths of the tfrecord files containing the serialized training data.

For details on checkpointing and distributing computation, see the jaxline documentation.

Similarly to above, it is necessary to install the correct jaxlib package to enable training on a GPU.

The training may now be launched using,

  python -m brave.experiment --config=brave/config.py

Training datasets

This model is able to read data stored in the format specified by DMVR. For an example of writing training data in the correct format see the code in dataset/fixtures.py, which is used to write the test fixtures used in the tests for this package.

Running the tests

After checking out this code locally, you may run the package tests using

  pip install -e .
  pytest brave

We recommend doing this from a clean virtual environment.

Citing this work

If you use this code (or any derived code), data or these models in your work, please cite the relevant accompanying paper.

@misc{recasens2021broaden,
      title={Broaden Your Views for Self-Supervised Video Learning},
      author={Adrià Recasens and Pauline Luc and Jean-Baptiste Alayrac and Luyu Wang and Ross Hemsley and Florian Strub and Corentin Tallec and Mateusz Malinowski and Viorica Patraucean and Florent Altché and Michal Valko and Jean-Bastien Grill and Aäron van den Oord and Andrew Zisserman},
      year={2021},
      eprint={2103.16559},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Disclaimer

This is not an official Google product

Owner
DeepMind
DeepMind
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022