Exploiting Robust Unsupervised Video Person Re-identification

Related tags

Deep LearninguPMnet
Overview

Exploiting Robust Unsupervised Video Person Re-identification

LICENSE Python tensorflow

Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv].

PWC PWC PWC

framework

Getting Started

Requirements

Here is a brief instruction for installing the experimental environment.

# install virtual envs
$ conda create -n uPMnet python=2.7 -y
$ conda activate uPMnet

# install tensorflow 1.4.0 with cuda 9.0
$ pip install --ignore-installed --upgrade https://github.com/mind/wheels/releases/download/tf1.4-gpu-cuda9/tensorflow-1.4.0-cp27-cp27mu-linux_x86_64.whl

# install mkl
$ sudo apt install cmake
$ git clone --branch v0.12 https://github.com/01org/mkl-dnn.git
$ cd mkl-dnn/scripts; ./prepare_mkl.sh && cd ..
$ mkdir -p build && cd build && cmake .. && make -j36
$ sudo make install
$ echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib' >> ~/.bashrc

# install other dependencies
$ pip install scipy matplotlib

Convert benchmarks to tfrecords

# Please modify the path in your way
$ bash datasets/convert_data_to_tfrecords.py

Download pre-trained models

The Mobilenet and Resnet models can be downloaded in this link (code: 1upx) and should be put in the checkpoints directory.

Training and Extracting features

$ bash scripts/train_PRID2011.sh # train_iLIDS_VID.sh or train_DukeMTMC-VideoReID.sh

Testing

Use the Matlab to run the following files, evaluation/CMC_PRID2011.m, evaluation/CMC_iLIDS-VID.m, and evaluation/CMC_DukeMTMC_VideoReID.m.

Results in the Paper

The results of PRID2011, iLIDS-VID, and DukeMTMC-VideoReID are provided.

Model [email protected] [email protected] [email protected]
uPMnet 92.0 link (code: xa7z) 63.1 link (code: le2c) 83.6 link (code: e9ja)

You can download these results and put them in the results directory. Then use Matlab to evaluate them.

Acknowledgement

This repository is built upon the repository DAL.

Citation

If you find this project useful for your research, please kindly cite:

@article{zang2021exploiting,
  title={Exploiting Robust Unsupervised Video Person Re-identification},
  author={Zang, Xianghao and Li, Ge and Gao, Wei and Shu, Xiujun},
  journal={arXiv preprint arXiv:2111.05170},
  year={2021}
}

License

This repository is released under the GPL-2.0 License as found in the LICENSE file.

abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022