Gammatone-based spectrograms, using gammatone filterbanks or Fourier transform weightings.

Related tags

Audiogammatone
Overview

Gammatone Filterbank Toolkit

Utilities for analysing sound using perceptual models of human hearing.

Jason Heeris, 2013

Summary

This is a port of Malcolm Slaney's and Dan Ellis' gammatone filterbank MATLAB code, detailed below, to Python 2 and 3 using Numpy and Scipy. It analyses signals by running them through banks of gammatone filters, similar to Fourier-based spectrogram analysis.

Gammatone-based spectrogram of Für Elise

Installation

You can install directly from this git repository using:

pip install git+https://github.com/detly/gammatone.git

...or you can clone the git repository however you prefer, and do:

pip install .

...or:

python setup.py install

...from the cloned tree.

Dependencies

  • numpy
  • scipy
  • nose
  • mock
  • matplotlib

Using the Code

See the API documentation. For a demonstration, find a .wav file (for example, Für Elise) and run:

python -m gammatone FurElise.wav -d 10

...to see a gammatone-gram of the first ten seconds of the track. If you've installed via pip or setup.py install, you should also be able to just run:

gammatone FurElise.wav -d 10

Basis

This project is based on research into how humans perceive audio, originally published by Malcolm Slaney:

Malcolm Slaney (1998) "Auditory Toolbox Version 2", Technical Report #1998-010, Interval Research Corporation, 1998.

Slaney's report describes a way of modelling how the human ear perceives, emphasises and separates different frequencies of sound. A series of gammatone filters are constructed whose width increases with increasing centre frequency, and this bank of filters is applied to a time-domain signal. The result of this is a spectrum that should represent the human experience of sound better than, say, a Fourier-domain spectrum would.

A gammatone filter has an impulse response that is a sine wave multiplied by a gamma distribution function. It is a common approach to modelling the auditory system.

The gammatone filterbank approach can be considered analogous (but not equivalent) to a discrete Fourier transform where the frequency axis is logarithmic. For example, a series of notes spaced an octave apart would appear to be roughly linearly spaced; or a sound that was distributed across the same linear frequency range would appear to have more spread at lower frequencies.

The real goal of this toolkit is to allow easy computation of the gammatone equivalent of a spectrogram — a time-varying spectrum of energy over audible frequencies based on a gammatone filterbank.

Slaney demonstrated his research with an initial implementation in MATLAB. This implementation was later extended by Dan Ellis, who found a way to approximate a "gammatone-gram" by using the fast Fourier transform. Ellis' code calculates a matrix of weights that can be applied to the output of a FFT so that a Fourier-based spectrogram can easily be transformed into such an approximation.

Ellis' code and documentation is here: Gammatone-like spectrograms

Interest

I became interested in this because of my background in science communication and my general interest in the teaching of signal processing. I find that the spectrogram approach to visualising signals is adequate for illustrating abstract systems or the mathematical properties of transforms, but bears little correspondence to a person's own experience of sound. If someone wants to see what their favourite piece of music "looks like," a normal Fourier transform based spectrogram is actually quite a poor way to visualise it. Features of the audio seem to be oddly spaced or unnaturally emphasised or de-emphasised depending on where they are in the frequency domain.

The gammatone filterbank approach seems to be closer to what someone might intuitively expect a visualisation of sound to look like, and can help develop an intuition about alternative representations of signals.

Verifying the port

Since this is a port of existing MATLAB code, I've written tests to verify the Python implementation against the original code. These tests aren't unit tests, but they do generally test single functions. Running the tests has the same workflow:

  1. Run the scripts in the test_generation directory. This will create a .mat file containing test data in tests/data.

  2. Run nosetest3 in the top level directory. This will find and run all the tests in the tests directory.

Although I'm usually loathe to check in generated files to version control, I'm willing to make an exception for the .mat files containing the test data. My reasoning is that they represent the decoupling of my code from the MATLAB code, and if the two projects were separated, they would be considered a part of the Python code, not the original MATLAB code.

Owner
Jason Heeris
Jason Heeris
Oliva music bot help to play vc music

OLIVA V2 🎵 Requirements 📝 FFmpeg NodeJS nodesource.com Python 3.7+ PyTgCalls Commands 🛠 For all in group /play - reply to youtube url or song file

SOUL々H҉A҉C҉K҉E҉R҉ 2 Oct 22, 2021
Terminal-based music player written in Python for the best music in the world 🎵 🎧 💻

audius-terminal-player Terminal-based music player written in Python for the best music in the world 🎵 🎧 💻 Browse and listen to Audius from the com

Audius 21 Jul 23, 2022
🎵 Python sound notifications made easy

chime Python sound notifications made easy. Table of contents Table of contents Motivation Installation Basic usage Theming IPython/Jupyter magic Exce

Max Halford 231 Jan 09, 2023
A lightweight yet powerful audio-to-MIDI converter with pitch bend detection

Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence La

Spotify 1.4k Jan 01, 2023
Bot duniya Music Player

Bot duniya Music Player Requirements 📝 FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) 2nd Telegram Account (ne

Aman Vishwakarma 16 Oct 21, 2022
Omniscient Mozart, being able to transcribe everything in the music, including vocal, drum, chord, beat, instruments, and more.

OMNIZART Omnizart is a Python library that aims for democratizing automatic music transcription. Given polyphonic music, it is able to transcribe pitc

MCTLab 1.3k Jan 08, 2023
python wrapper for rubberband

pyrubberband A python wrapper for rubberband. For now, this just provides lightweight wrappers for pitch-shifting and time-stretching. All processing

Brian McFee 106 Nov 28, 2022
gentle forced aligner

Gentle Robust yet lenient forced-aligner built on Kaldi. A tool for aligning speech with text. Getting Started There are three ways to install Gentle.

1.2k Dec 30, 2022
Read music meta data and length of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python 2 or 3

tinytag tinytag is a library for reading music meta data of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python Install pip install tinytag

Tom Wallroth 577 Dec 26, 2022
A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

921 Jan 05, 2023
Small Python application that links a Digico console and Reaper, handling automatic marker insertion and tracking.

Digico-Reaper-Link This is a small GUI based helper application designed to help with using Digico's Copy Audio function with a Reaper DAW used for re

Justin Stasiw 10 Oct 24, 2022
Terminal-based audio-to-text converter

att Terminal-based audio-to-text converter Project description A terminal-based audio-to-text converter written in python, enabling you to convert .wa

Sven Eschlbeck 4 Dec 15, 2022
live coding in python + supercollider

live coding in python + supercollider

Zack 6 Feb 06, 2022
Pyrogram bot to automate streaming music in voice chats

Pyrogram bot to automate streaming music in voice chats Help If you face an error, want to discuss this project or get support for it, join it's group

Roj 124 Oct 21, 2022
Inner ear models for Python

cochlea cochlea is a collection of inner ear models. All models are easily accessible as Python functions. They take sound signal as input and return

98 Jan 05, 2023
A Simple Script that will help you to Play / Change Songs with just your Voice

Auto-Spotify using Voice Recognition A Simple Script that will help you to Play / Change Songs with just your Voice Explore the docs » Table of Conten

Mehul Shah 1 Nov 21, 2021
Synthesia but open source, made in python and free

PyPiano Synthesia but open source, made in python and free Requirements are in requirements.txt If you struggle with installation of pyaudio, run : pi

DaCapo 11 Nov 06, 2022
Sequencer: Deep LSTM for Image Classification

Sequencer: Deep LSTM for Image Classification Created by Yuki Tatsunami Masato Taki This repository contains implementation for Sequencer. Abstract In

Yuki Tatsunami 111 Dec 16, 2022
nicfit 425 Jan 01, 2023
Pythonic bindings for FFmpeg's libraries.

PyAV PyAV is a Pythonic binding for the FFmpeg libraries. We aim to provide all of the power and control of the underlying library, but manage the gri

PyAV 1.8k Jan 03, 2023