A Python library for Deep Graph Networks

Related tags

Deep LearningPyDGN
Overview

PyDGN

Wiki

Description

This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitting, loading and the most common experimental settings. It also handles both model selection and risk assessment procedures, by trying many different configurations in parallel (CPU or GPU). This repository is built upon the Pytorch Geometric Library, which provides support for data management.

If you happen to use or modify this code, please remember to cite our tutorial paper:

Bacciu Davide, Errica Federico, Micheli Alessio, Podda Marco: A Gentle Introduction to Deep Learning for Graphs, Neural Networks, 2020. DOI: 10.1016/j.neunet.2020.06.006.

If you are interested in a rigorous evaluation of Deep Graph Networks, check this out:

Errica Federico, Podda Marco, Bacciu Davide, Micheli Alessio: A Fair Comparison of Graph Neural Networks for Graph Classification. Proceedings of the 8th International Conference on Learning Representations (ICLR 2020). Code

Installation:

(We assume git and Miniconda/Anaconda are installed)

First, make sure gcc 5.2.0 is installed: conda install -c anaconda libgcc=5.2.0. Then, echo $LD_LIBRARY_PATH should always contain :/home/[your user name]/miniconda3/lib. Then run from your terminal the following command:

source setup/install.sh [<your_cuda_version>]
pip install pydgn

Where <your_cuda_version> is an optional argument that can be either cpu, cu102 or cu111 for Pytorch >= 1.8.0. If you do not provide a cuda version, the script will default to cpu. The script will create a virtual environment named pydgn, with all the required packages needed to run our code. Important: do NOT run this command using bash instead of source!

Remember that PyTorch MacOS Binaries dont support CUDA, install from source if CUDA is needed

Usage:

Preprocess your dataset (see also Wiki)

python build_dataset.py --config-file [your data config file]

Exampla

python build_dataset.py --config-file DATA_CONFIGS/config_PROTEINS.yml 

Launch an experiment in debug mode (see also Wiki)

python launch_experiment.py --config-file [your exp. config file] --splits-folder [the splits MAIN folder] --data-splits [the splits file] --data-root [root folder of your data] --dataset-name [name of the dataset] --dataset-class [class that handles the dataset] --max-cpus [max cpu parallelism] --max-gpus [max gpu parallelism] --gpus-per-task [how many gpus to allocate for each job] --final-training-runs [how many final runs when evaluating on test. Results are averaged] --result-folder [folder where to store results]

Example (GPU required)

python launch_experiment.py --config-file MODEL_CONFIGS/config_SupToyDGN_RandomSearch.yml --splits-folder DATA_SPLITS/CHEMICAL/ --data-splits DATA_SPLITS/CHEMICAL/PROTEINS/PROTEINS_outer10_inner1.splits --data-root DATA --dataset-name PROTEINS --dataset-class pydgn.data.dataset.TUDatasetInterface --max-cpus 1 --max-gpus 1 --final-training-runs 1 --result-folder RESULTS/DEBUG

To debug your code it is useful to add --debug to the command above. Notice, however, that the CLI will not work as expected here, as code will be executed sequentially. After debugging, if you need sequential execution, you can use --max-cpus 1 --max-gpus 1 --gpus-per-task [0/1] without the --debug option.

Grid Search 101

Have a look at one of the config files.

Random Search 101

Specify a num_samples in the config file with the number of random trials, replace grid with random, and specify a sampling method for each hyper-parameter. We provide different sampling methods:

  • choice --> pick at random from a list of arguments
  • uniform --> pick uniformly from min and max arguments
  • normal --> sample from normal distribution with mean and std
  • randint --> pick at random from min and max
  • loguniform --> pick following the recprocal distribution from log_min, log_max, with a specified base

There is one config file, namely config_SupToyDGN_RandomSearch.yml, which you can check to see an example.

Data Splits

We provide the data splits taken from

Errica Federico, Podda Marco, Bacciu Davide, Micheli Alessio: A Fair Comparison of Graph Neural Networks for Graph Classification. Proceedings of the 8th International Conference on Learning Representations (ICLR 2020). Code

in the DATA_SPLITS folder.

Credits:

This is a joint project with Marco Podda (Github /Homepage), whom I thank for his relentless dedication.

Many thanks to Antonio Carta (Github/Homepage) for incorporating the Ray library (see v0.4.0) into PyDGN! This will be of tremendous help.

Many thanks to Danilo Numeroso (Github /Homepage) for implementing a very flexible random search! This is a very convenient alternative to grid search.

Contributing

This research software is provided as-is. We are working on this library in our spare time.

If you find a bug, please open an issue to report it, and we will do our best to solve it. For generic/technical questions, please email us rather than opening an issue.

License:

PyDGN is GPL 3.0 licensed, as written in the LICENSE file.

Troubleshooting

As of 15th of August 2021, there is an issue with Pytorch 1.9.0 which impacts the CLI. This is why the setup script installs Pytorch 1.8.1 in the pydgn conda environment until Pytorch 1.10 is released (known to solve the issue).

--

If you get errors like /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found:

  • make sure gcc 5.2.0 is installed: conda install -c anaconda libgcc=5.2.0
  • echo $LD_LIBRARY_PATH should contain :/home/[your user name]/[your anaconda or miniconda folder name]/lib
  • after checking the above points, you can reinstall everything with pip using the --no-cache-dir option
Comments
  • Keep getting raylet error

    Keep getting raylet error

    🔨 Describe the bug

    Hi, I am keep getting raylet error when tryin g to run the example. Is there a way to stop using ray since I am running the experiment on my local computer?

    Thank you!

    (raylet) /home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/autoscaler/_private/cli_logger.py:57: FutureWarning: Not all Ray CLI dependencies were found. In Ray 1.4+, the Ray CLI, autoscaler, and dashboard will only be usable via pip install 'ray[default]'. Please update your install command. (raylet) warnings.warn( 2022-10-14 13:08:12,974 WARNING worker.py:1189 -- The agent on node EW22-05284 failed with the following error: Traceback (most recent call last): File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 354, in loop.run_until_complete(agent.run()) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete return future.result() File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 144, in run modules = self._load_modules() File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 98, in _load_modules c = cls(self) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/modules/reporter/reporter_agent.py", line 148, in init self._metrics_agent = MetricsAgent(dashboard_agent.metrics_export_port) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/metrics_agent.py", line 75, in init prometheus_exporter.new_stats_exporter( File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 333, in new_stats_exporter exporter = PrometheusStatsExporter( File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 266, in init self.serve_http() File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 320, in serve_http start_http_server( File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/prometheus_client/exposition.py", line 168, in start_wsgi_server TmpServer.address_family, addr = _get_best_family(addr, port) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/prometheus_client/exposition.py", line 157, in _get_best_family infos = socket.getaddrinfo(address, port) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/socket.py", line 918, in getaddrinfo for res in _socket.getaddrinfo(host, port, family, type, proto, flags): socket.gaierror: [Errno -2] Name or service not known

    (raylet) Traceback (most recent call last): (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 366, in (raylet) raise e (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 354, in (raylet) loop.run_until_complete(agent.run()) (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete (raylet) return future.result() (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 144, in run (raylet) modules = self._load_modules() (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 98, in _load_modules (raylet) c = cls(self) (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/modules/reporter/reporter_agent.py", line 148, in init (raylet) self._metrics_agent = MetricsAgent(dashboard_agent.metrics_export_port) (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/metrics_agent.py", line 75, in init (raylet) prometheus_exporter.new_stats_exporter( (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 333, in new_stats_exporter (raylet) exporter = PrometheusStatsExporter( (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 266, in init (raylet) self.serve_http() (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 320, in serve_http (raylet) start_http_server( (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/prometheus_client/exposition.py", line 168, in start_wsgi_server (raylet) TmpServer.address_family, addr = _get_best_family(addr, port) (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/prometheus_client/exposition.py", line 157, in _get_best_family (raylet) infos = socket.getaddrinfo(address, port) (raylet) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/socket.py", line 918, in getaddrinfo (raylet) for res in _socket.getaddrinfo(host, port, family, type, proto, flags): (raylet) socket.gaierror: [Errno -2] Name or service not known (raylet) /home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/autoscaler/_private/cli_logger.py:57: FutureWarning: Not all Ray CLI dependencies were found. In Ray 1.4+, the Ray CLI, autoscaler, and dashboard will only be usable via pip install 'ray[default]'. Please update your install command. (raylet) warnings.warn( 2022-10-14 13:08:14,624 WARNING worker.py:1189 -- The agent on node EW22-05284 failed with the following error: Traceback (most recent call last): File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 354, in loop.run_until_complete(agent.run()) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete return future.result() File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 144, in run modules = self._load_modules() File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/agent.py", line 98, in _load_modules c = cls(self) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/new_dashboard/modules/reporter/reporter_agent.py", line 148, in init self._metrics_agent = MetricsAgent(dashboard_agent.metrics_export_port) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/metrics_agent.py", line 75, in init prometheus_exporter.new_stats_exporter( File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 333, in new_stats_exporter exporter = PrometheusStatsExporter( File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 266, in init self.serve_http() File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/ray/_private/prometheus_exporter.py", line 320, in serve_http start_http_server( File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/prometheus_client/exposition.py", line 168, in start_wsgi_server TmpServer.address_family, addr = _get_best_family(addr, port) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/site-packages/prometheus_client/exposition.py", line 157, in _get_best_family infos = socket.getaddrinfo(address, port) File "/home/jwtxwd/anaconda3/envs/pydgn/lib/python3.8/socket.py", line 918, in getaddrinfo for res in _socket.getaddrinfo(host, port, family, type, proto, flags): socket.gaierror: [Errno -2] Name or service not known

    bug 
    opened by jwtxwd 4
  • Training engine and returned data list

    Training engine and returned data list

    Feature description

    When shuffling the dataset, the training engine will return the data list shuffled according to the permutation of the data sampler. We should make sure that we reorder the data list.

    Ideas on how to do it

    No response

    Additional info

    No response

    opened by diningphil 2
  • [WIP] feat(plotter): Add W&B Logging

    [WIP] feat(plotter): Add W&B Logging

    This PR proposes to add Weights & Biases logging to the library using helpful tensorboard based utilities. Instead of a separate logger, currently I propose we just monkeypatch and upload the Tensorboard logs to W&B.

    Leaving it as a Draft for now to start a conversation.

    CC: @diningphil @gravins

    opened by SauravMaheshkar 2
  • Fix Ray not deallocating GPU memory

    Fix Ray not deallocating GPU memory

    🔨 Describe the bug

    Some IDLE workers do not release the memory. This is a problem as described (together with potential fix) here: https://docs.ray.io/en/latest/ray-core/tasks/using-ray-with-gpus.html#workers-not-releasing-gpu-resources

    bug 
    opened by diningphil 1
  • Add option to specify subset of GPUs

    Add option to specify subset of GPUs

    Feature description

    In case one wants to force specific GPU IDs to be used, it should be possible to do so when running pydgn-train.

    Ideas on how to do it

    No response

    Additional info

    No response

    opened by diningphil 1
  • Bump aiohttp from 3.7 to 3.7.4

    Bump aiohttp from 3.7 to 3.7.4

    Bumps aiohttp from 3.7 to 3.7.4.

    Release notes

    Sourced from aiohttp's releases.

    aiohttp 3.7.3 release

    Features

    • Use Brotli instead of brotlipy [#3803](https://github.com/aio-libs/aiohttp/issues/3803) <https://github.com/aio-libs/aiohttp/issues/3803>_
    • Made exceptions pickleable. Also changed the repr of some exceptions. [#4077](https://github.com/aio-libs/aiohttp/issues/4077) <https://github.com/aio-libs/aiohttp/issues/4077>_

    Bugfixes

    • Raise a ClientResponseError instead of an AssertionError for a blank HTTP Reason Phrase. [#3532](https://github.com/aio-libs/aiohttp/issues/3532) <https://github.com/aio-libs/aiohttp/issues/3532>_
    • Fix web_middlewares.normalize_path_middleware behavior for patch without slash. [#3669](https://github.com/aio-libs/aiohttp/issues/3669) <https://github.com/aio-libs/aiohttp/issues/3669>_
    • Fix overshadowing of overlapped sub-applications prefixes. [#3701](https://github.com/aio-libs/aiohttp/issues/3701) <https://github.com/aio-libs/aiohttp/issues/3701>_
    • Make BaseConnector.close() a coroutine and wait until the client closes all connections. Drop deprecated "with Connector():" syntax. [#3736](https://github.com/aio-libs/aiohttp/issues/3736) <https://github.com/aio-libs/aiohttp/issues/3736>_
    • Reset the sock_read timeout each time data is received for a aiohttp.client response. [#3808](https://github.com/aio-libs/aiohttp/issues/3808) <https://github.com/aio-libs/aiohttp/issues/3808>_
    • Fixed type annotation for add_view method of UrlDispatcher to accept any subclass of View [#3880](https://github.com/aio-libs/aiohttp/issues/3880) <https://github.com/aio-libs/aiohttp/issues/3880>_
    • Fixed querying the address families from DNS that the current host supports. [#5156](https://github.com/aio-libs/aiohttp/issues/5156) <https://github.com/aio-libs/aiohttp/issues/5156>_
    • Change return type of MultipartReader.aiter() and BodyPartReader.aiter() to AsyncIterator. [#5163](https://github.com/aio-libs/aiohttp/issues/5163) <https://github.com/aio-libs/aiohttp/issues/5163>_
    • Provide x86 Windows wheels. [#5230](https://github.com/aio-libs/aiohttp/issues/5230) <https://github.com/aio-libs/aiohttp/issues/5230>_

    Improved Documentation

    • Add documentation for aiohttp.web.FileResponse. [#3958](https://github.com/aio-libs/aiohttp/issues/3958) <https://github.com/aio-libs/aiohttp/issues/3958>_
    • Removed deprecation warning in tracing example docs [#3964](https://github.com/aio-libs/aiohttp/issues/3964) <https://github.com/aio-libs/aiohttp/issues/3964>_
    • Fixed wrong "Usage" docstring of aiohttp.client.request. [#4603](https://github.com/aio-libs/aiohttp/issues/4603) <https://github.com/aio-libs/aiohttp/issues/4603>_
    • Add aiohttp-pydantic to third party libraries [#5228](https://github.com/aio-libs/aiohttp/issues/5228) <https://github.com/aio-libs/aiohttp/issues/5228>_

    Misc

    ... (truncated)

    Changelog

    Sourced from aiohttp's changelog.

    3.7.4 (2021-02-25)

    Bugfixes

    • (SECURITY BUG) Started preventing open redirects in the aiohttp.web.normalize_path_middleware middleware. For more details, see https://github.com/aio-libs/aiohttp/security/advisories/GHSA-v6wp-4m6f-gcjg.

      Thanks to Beast Glatisant <https://github.com/g147>__ for finding the first instance of this issue and Jelmer Vernooij <https://jelmer.uk/>__ for reporting and tracking it down in aiohttp. [#5497](https://github.com/aio-libs/aiohttp/issues/5497) <https://github.com/aio-libs/aiohttp/issues/5497>_

    • Fix interpretation difference of the pure-Python and the Cython-based HTTP parsers construct a yarl.URL object for HTTP request-target.

      Before this fix, the Python parser would turn the URI's absolute-path for //some-path into / while the Cython code preserved it as //some-path. Now, both do the latter. [#5498](https://github.com/aio-libs/aiohttp/issues/5498) <https://github.com/aio-libs/aiohttp/issues/5498>_


    3.7.3 (2020-11-18)

    Features

    • Use Brotli instead of brotlipy [#3803](https://github.com/aio-libs/aiohttp/issues/3803) <https://github.com/aio-libs/aiohttp/issues/3803>_
    • Made exceptions pickleable. Also changed the repr of some exceptions. [#4077](https://github.com/aio-libs/aiohttp/issues/4077) <https://github.com/aio-libs/aiohttp/issues/4077>_

    Bugfixes

    • Raise a ClientResponseError instead of an AssertionError for a blank HTTP Reason Phrase. [#3532](https://github.com/aio-libs/aiohttp/issues/3532) <https://github.com/aio-libs/aiohttp/issues/3532>_
    • Fix web_middlewares.normalize_path_middleware behavior for patch without slash. [#3669](https://github.com/aio-libs/aiohttp/issues/3669) <https://github.com/aio-libs/aiohttp/issues/3669>_
    • Fix overshadowing of overlapped sub-applications prefixes. [#3701](https://github.com/aio-libs/aiohttp/issues/3701) <https://github.com/aio-libs/aiohttp/issues/3701>_

    ... (truncated)

    Commits
    • 0a26acc Bump aiohttp to v3.7.4 for a security release
    • 021c416 Merge branch 'ghsa-v6wp-4m6f-gcjg' into master
    • 4ed7c25 Bump chardet from 3.0.4 to 4.0.0 (#5333)
    • b61f0fd Fix how pure-Python HTTP parser interprets //
    • 5c1efbc Bump pre-commit from 2.9.2 to 2.9.3 (#5322)
    • 0075075 Bump pygments from 2.7.2 to 2.7.3 (#5318)
    • 5085173 Bump multidict from 5.0.2 to 5.1.0 (#5308)
    • 5d1a75e Bump pre-commit from 2.9.0 to 2.9.2 (#5290)
    • 6724d0e Bump pre-commit from 2.8.2 to 2.9.0 (#5273)
    • c688451 Removed duplicate timeout parameter in ClientSession reference docs. (#5262) ...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump aiohttp from 3.7 to 3.7.4 in /.github

    Bump aiohttp from 3.7 to 3.7.4 in /.github

    Bumps aiohttp from 3.7 to 3.7.4.

    Release notes

    Sourced from aiohttp's releases.

    aiohttp 3.7.3 release

    Features

    • Use Brotli instead of brotlipy [#3803](https://github.com/aio-libs/aiohttp/issues/3803) <https://github.com/aio-libs/aiohttp/issues/3803>_
    • Made exceptions pickleable. Also changed the repr of some exceptions. [#4077](https://github.com/aio-libs/aiohttp/issues/4077) <https://github.com/aio-libs/aiohttp/issues/4077>_

    Bugfixes

    • Raise a ClientResponseError instead of an AssertionError for a blank HTTP Reason Phrase. [#3532](https://github.com/aio-libs/aiohttp/issues/3532) <https://github.com/aio-libs/aiohttp/issues/3532>_
    • Fix web_middlewares.normalize_path_middleware behavior for patch without slash. [#3669](https://github.com/aio-libs/aiohttp/issues/3669) <https://github.com/aio-libs/aiohttp/issues/3669>_
    • Fix overshadowing of overlapped sub-applications prefixes. [#3701](https://github.com/aio-libs/aiohttp/issues/3701) <https://github.com/aio-libs/aiohttp/issues/3701>_
    • Make BaseConnector.close() a coroutine and wait until the client closes all connections. Drop deprecated "with Connector():" syntax. [#3736](https://github.com/aio-libs/aiohttp/issues/3736) <https://github.com/aio-libs/aiohttp/issues/3736>_
    • Reset the sock_read timeout each time data is received for a aiohttp.client response. [#3808](https://github.com/aio-libs/aiohttp/issues/3808) <https://github.com/aio-libs/aiohttp/issues/3808>_
    • Fixed type annotation for add_view method of UrlDispatcher to accept any subclass of View [#3880](https://github.com/aio-libs/aiohttp/issues/3880) <https://github.com/aio-libs/aiohttp/issues/3880>_
    • Fixed querying the address families from DNS that the current host supports. [#5156](https://github.com/aio-libs/aiohttp/issues/5156) <https://github.com/aio-libs/aiohttp/issues/5156>_
    • Change return type of MultipartReader.aiter() and BodyPartReader.aiter() to AsyncIterator. [#5163](https://github.com/aio-libs/aiohttp/issues/5163) <https://github.com/aio-libs/aiohttp/issues/5163>_
    • Provide x86 Windows wheels. [#5230](https://github.com/aio-libs/aiohttp/issues/5230) <https://github.com/aio-libs/aiohttp/issues/5230>_

    Improved Documentation

    • Add documentation for aiohttp.web.FileResponse. [#3958](https://github.com/aio-libs/aiohttp/issues/3958) <https://github.com/aio-libs/aiohttp/issues/3958>_
    • Removed deprecation warning in tracing example docs [#3964](https://github.com/aio-libs/aiohttp/issues/3964) <https://github.com/aio-libs/aiohttp/issues/3964>_
    • Fixed wrong "Usage" docstring of aiohttp.client.request. [#4603](https://github.com/aio-libs/aiohttp/issues/4603) <https://github.com/aio-libs/aiohttp/issues/4603>_
    • Add aiohttp-pydantic to third party libraries [#5228](https://github.com/aio-libs/aiohttp/issues/5228) <https://github.com/aio-libs/aiohttp/issues/5228>_

    Misc

    ... (truncated)

    Changelog

    Sourced from aiohttp's changelog.

    3.7.4 (2021-02-25)

    Bugfixes

    • (SECURITY BUG) Started preventing open redirects in the aiohttp.web.normalize_path_middleware middleware. For more details, see https://github.com/aio-libs/aiohttp/security/advisories/GHSA-v6wp-4m6f-gcjg.

      Thanks to Beast Glatisant <https://github.com/g147>__ for finding the first instance of this issue and Jelmer Vernooij <https://jelmer.uk/>__ for reporting and tracking it down in aiohttp. [#5497](https://github.com/aio-libs/aiohttp/issues/5497) <https://github.com/aio-libs/aiohttp/issues/5497>_

    • Fix interpretation difference of the pure-Python and the Cython-based HTTP parsers construct a yarl.URL object for HTTP request-target.

      Before this fix, the Python parser would turn the URI's absolute-path for //some-path into / while the Cython code preserved it as //some-path. Now, both do the latter. [#5498](https://github.com/aio-libs/aiohttp/issues/5498) <https://github.com/aio-libs/aiohttp/issues/5498>_


    3.7.3 (2020-11-18)

    Features

    • Use Brotli instead of brotlipy [#3803](https://github.com/aio-libs/aiohttp/issues/3803) <https://github.com/aio-libs/aiohttp/issues/3803>_
    • Made exceptions pickleable. Also changed the repr of some exceptions. [#4077](https://github.com/aio-libs/aiohttp/issues/4077) <https://github.com/aio-libs/aiohttp/issues/4077>_

    Bugfixes

    • Raise a ClientResponseError instead of an AssertionError for a blank HTTP Reason Phrase. [#3532](https://github.com/aio-libs/aiohttp/issues/3532) <https://github.com/aio-libs/aiohttp/issues/3532>_
    • Fix web_middlewares.normalize_path_middleware behavior for patch without slash. [#3669](https://github.com/aio-libs/aiohttp/issues/3669) <https://github.com/aio-libs/aiohttp/issues/3669>_
    • Fix overshadowing of overlapped sub-applications prefixes. [#3701](https://github.com/aio-libs/aiohttp/issues/3701) <https://github.com/aio-libs/aiohttp/issues/3701>_

    ... (truncated)

    Commits
    • 0a26acc Bump aiohttp to v3.7.4 for a security release
    • 021c416 Merge branch 'ghsa-v6wp-4m6f-gcjg' into master
    • 4ed7c25 Bump chardet from 3.0.4 to 4.0.0 (#5333)
    • b61f0fd Fix how pure-Python HTTP parser interprets //
    • 5c1efbc Bump pre-commit from 2.9.2 to 2.9.3 (#5322)
    • 0075075 Bump pygments from 2.7.2 to 2.7.3 (#5318)
    • 5085173 Bump multidict from 5.0.2 to 5.1.0 (#5308)
    • 5d1a75e Bump pre-commit from 2.9.0 to 2.9.2 (#5290)
    • 6724d0e Bump pre-commit from 2.8.2 to 2.9.0 (#5273)
    • c688451 Removed duplicate timeout parameter in ClientSession reference docs. (#5262) ...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Weighted Additive Loss

    Weighted Additive Loss

    Feature description

    Improve AdditiveLoss by adding the possibility of weighting the different losses.

    Ideas on how to do it

    No response

    Additional info

    No response

    opened by diningphil 1
  • Telegram Bot support

    Telegram Bot support

    Feature description

    Add telegram bot support to send messages whenever an experiment breaks suddenly or the entire set of experiments (with the chance to have granularity) has finished

    Ideas on how to do it

    Once you create a bot, it should be easy to send a message to a particular chat.

    Additional info

    No response

    opened by diningphil 1
  • Accumulate predictions for metric that require global statistics

    Accumulate predictions for metric that require global statistics

    Feature description

    Metrics like AP require that all the samples of the train/valt/test dataset are taken into account when computing a score. We should add an option to allow, with greater usage of memory, to accumulate all predictions and target values until the end of an epoch, and subsequently compute the epoch score.

    Ideas on how to do it

    No response

    Additional info

    No response

    opened by diningphil 1
  • Metric improvement

    Metric improvement

    Feature description

    Metric should always use the result from the _handle_reduction function, even when accumulating the number of samples.

    This is because _handle_reduction may do something more complicated in some metrics that override the function.

    Be careful, however, that this works for both "mean" and "sum" reductions.

    Ideas on how to do it

    No response

    Additional info

    No response

    opened by diningphil 1
  • Support for Single-experiment/Multi-GPU

    Support for Single-experiment/Multi-GPU

    Feature description

    Allow an experiment to run on multiple GPUs.

    Ideas on how to do it

    No response

    Additional info

    Remember to set the appropriate seed on all GPUs using torch.cuda.manual_seed_all

    opened by diningphil 1
Releases(v1.3.0.post2)
Owner
Federico Errica
Teaching Machines
Federico Errica
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022