This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Overview

S22-W4111-HW-1-0:
W4111 - Intro to Databases HW0 and HW1

Introduction

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks.

HW 0 - All Students

You have completed the first step, which is cloning the project template.

Note: You are Columbia students. You should be able to install SW and follow instructions.

MySQL:

  • Download the installation files for MySQL Community Server..

    • Make sure you download for the correct operating system.
    • If you are on Mac make sure you choose the correct architecture. ARM is for Apple silicon. x86 is for other Apple systems.
    • On Windows, you can download and use the MSI.
  • Follow the installation instructions for MySQL. There are official instructions and many online tutorials.

  • Remember your root user ID and password, that you set during installation. Also, choose "Legacy Authentication" when prompted.

    • If you forget your root user or password, you are on your own. The TAs and I will not fix any problems due to forgetting the information.
    • Also, if you say something like, "It did not prompt me for a user ID and password when I instaled ... ..," we will laugh. We will say something like, ""Sure. 20 million MySQL installations asked for the information, but it decide to not to ask you."
    • If you tell us that you are sure that you are entering the correct user ID and password we will laugh. We will say something like, "Which is more likely. That a DATABASE forgot something or" you did?"
  • You only need to install the server. All other SW packages are optional.

Anaconda:

  • I strongly recommend uninstalling any existing version of Anaconda. If you choose not to uninstall previous versions, you may hit issues. You are on your own if you hit issues due to conflicting versions of Anaconda during the semester.

  • Download the most recent version of Ananconda..

  • Follow the installation instructions. Choose "Install for me" when prompted. If you hit a problem and I find your Anaconda installation in the wrong directory, you are on your own. If you say something like, "But, it did not give me that option," you can guess what will happen.

DataGrip:

  • Download DataGrip. Make sure you choose the correct OS and silicon.

  • Follow the installation instructions.

  • Apply for a student license.

  • When you receive confirmation of your student license, set the license information in DataGrip.

HW0: Non-Programming

Step 1: Initial Files

  1. Create a folder in the project of the form _src, where is your UNI I created an example, which is dff9_src.

  2. Create a file in the directory _HW0.

  3. Copy the Jupyter notebook file from dff9_src/dff9_HW0.ipynb into the directory you created and replace dff9 with your UNI.

  4. Do the same for dff9_HW0.py

Step 2: Jupter Notebook

  • Start Anaconda.

  • Open Jupyter Notebook in Anaconda.

  • Navigate to the directory where you cloned the repository, and then go into the folder you created.

  • Open the notebook (the file ending in .ipynb).

  • The remaining steps in HW0: Non-Programming are in the notebook that you opened.

HW 0: Programming

  • Complete the steps for HW0: Non-Programming.

  • The programming track is not "harder" than non-programming. The initial set up is a little more work, however.

  • Download and install PyCharm. Download and install the professional edition.

  • Follow the instructions to set the license key using the JetBrains account you used to get the DataGrip licenses.

  • Start PyCharm, navigate to and open the project that you cloned from GitHub.

  • Follow the instructions for creating a new virtual Conda environment for the project.

  • Select the root folder in the project, right click and add a new Python Package named _web_src. My example is dff9_web_src.

  • Copy the files from dff9_web_src into the package you created.

  • Follow the instructions for adding a package to your virtual environment. You should add the package flask.

  • Right click on your file application.py that you copied and select run. You will see a console window open and this will show a URL. Copy on the URL.

  • Open a browser. Paste the URL and append '/health'. My URL looks like http://172.20.1.14:5000/health. Yours may be a little different.

  • Hit enter. You should see a health message. Take a screenshot of the browser window and add the file to the directory. My example is ""

Owner
Donald F. Ferguson
Senior Technical Fellow, Chief SW Architect, Ansys, Inc. Adjunct Professor, Dept. of Computer Science, Columbia University. CTO and Co-Founder, Seeka.TV
Donald F. Ferguson
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022