A Python Package for Convex Regression and Frontier Estimation

Overview

pyStoNED Documentation Status

pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expectile regression, isotonic regression, stochastic nonparametric envelopment of data, and related methods. It also facilitates efficiency measurement using the conventional Data Envelopement Analysis (DEA) and Free Disposable Hull (FDH) approaches. The pyStoNED package allows practitioners to estimate these models in an open access environment under a GPL-3.0 License.

Installation

The pyStoNED package is now avaiable on PyPI and the latest development version can be installed from the Github repository pyStoNED. Please feel free to download and test it. We welcome any bug reports and feedback.

PyPI PyPI version DownloadsPyPI downloads

pip install pystoned

GitHub

pip install -U git+https://github.com/ds2010/pyStoNED

Authors

  • Sheng Dai, Ph.D. candidate, Aalto University School of Business.
  • Yu-Hsueh Fang, Computer Engineer, Institute of Manufacturing Information and Systems, National Cheng Kung University.
  • Chia-Yen Lee, Professor, College of Management, National Taiwan University.
  • Timo Kuosmanen, Professor, Aalto University School of Business.

Citation

If you use pyStoNED for published work, we encourage you to cite our following paper and other related works. We appreciate it.

Dai S, Fang YH, Lee CY, Kuosmanen T. (2021). pyStoNED: A Python Package for Convex Regression and Frontier Estimation. arXiv preprint arXiv:2109.12962.
Comments
  • StoNED and Plot2d/3d: can not plot the StoNED frontier

    StoNED and Plot2d/3d: can not plot the StoNED frontier

    Hi @JulianATA, I found we can not plot the StoNED frontier using the plot. It should be OK. Please check the following error.

    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-14-cfd06442dd17> in <module>
          2 rd = StoNED.StoNED(model)
          3 model_new = rd.get_frontier(RED_MOM)
    ----> 4 plot2d(model_new, x_select=0, label_name="StoNED frontier", fig_name="stoned_2d")
    
    C:\Anaconda3\lib\site-packages\pystoned\plot.py in plot2d(model, x_select, label_name, fig_name)
         15         fig_name (String, optional): The name of figure to save. Defaults to None.
         16     """
    ---> 17     x = np.array(model.x).T[x_select]
         18     y = np.array(model.y).T
         19     if y.ndim != 1:
    
    AttributeError: 'numpy.ndarray' object has no attribute 'x'
    
    

    I have tried to add the following line to StoNED. https://github.com/ds2010/pyStoNED/blob/b673006ff8fe7152125f42702173f9ce49d1d83e/pystoned/StoNED.py#L17

    But it still does not work. Could you please help to fix it? Many thanks in advance!

    Sheng

    opened by ds2010 8
  • StoNED: can not get unconditional expected inefficiency

    StoNED: can not get unconditional expected inefficiency

    Hi @JulianATA , It seems that there is a bug in StoNED.py when calculating the unconditional expected inefficiency. Please check the following error and fix it. Thanks in advance!

    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-4-8d44572d25fb> in <module>
          1 # retrive the unconditional expected inefficiency \mu
          2 rd = StoNED.StoNED(model)
    ----> 3 print(model.get_unconditional_expected_inefficiency('KDE'))
    
    AttributeError: 'CNLS' object has no attribute 'get_unconditional_expected_inefficiency'
    
    opened by ds2010 8
  • Refactor basic DEA and FDH by class

    Refactor basic DEA and FDH by class

    • This pr provides the refactored basic DEA and FDH You can test the classes with fallowing codes:

    DEA

    import pandas as pd
    import numpy as np
    
    # import the package pystoned
    from pystoned import DEA
    
    # import Finnish electricity distribution firms data
    url = 'https://raw.githubusercontent.com/ds2010/pyStoNED-Tutorials/master/Data/firms.csv'
    df = pd.read_csv(url, error_bad_lines=False)
    
    # output
    y = df['Energy']
    
    # inputs
    x1 = df['OPEX']
    x1 = np.asmatrix(x1).T
    x2 = df['CAPEX']
    x2 = np.asmatrix(x2).T
    x = np.concatenate((x1, x2), axis=1)
    
    model = DEA.DEA(y,x,"oo","vrs")
    model.optimize(False)
    model.display_theta()
    

    FDH

    import pandas as pd
    import numpy as np
    
    # import the package pystoned
    from pystoned import FDH
    
    # import Finnish electricity distribution firms data
    url = 'https://raw.githubusercontent.com/ds2010/pyStoNED-Tutorials/master/Data/firms.csv'
    df = pd.read_csv(url, error_bad_lines=False)
    
    # output
    y = df['Energy']
    
    # inputs
    x1 = df['OPEX']
    x1 = np.asmatrix(x1).T
    x2 = df['CAPEX']
    x2 = np.asmatrix(x2).T
    x = np.concatenate((x1, x2), axis=1)
    
    model = FDH.FDH(y,x,"oo")
    model.optimize(False)
    model.display_theta()
    
    • The results are identical to the original codes.
    • The StoNED + CNLSDDF has been implemented, however it is a little bit complicated.
      • To reduce the complexity of StoNED + CNLSDDF, I'm recently working on get_frontier function.
      • The get_frontier function can make the implementation of StoNED/StoNED+DDF more consistency.
    opened by Fangop 7
  • feat(StoNEZD): Implement StoNEZD by classes

    feat(StoNEZD): Implement StoNEZD by classes

    This pr provides a tiny refactor of CNLSZ and an implementation of StoNEZD. First, thanks for the major refactoring of CNLSZ class, this pr used inheritance to reduce the duplicated codes for consistency of our package. Second, the StoNEZD model has been implemented. It is now simple to implement this kind o advanced model since we have so many basic models as complements.

    The testing codes are provided below:

    CNLSZ

    from pystoned import CNLSZ
    
    import pandas as pd
    import numpy as np
    
    # import Finnish electricity distribution firms data
    url = 'https://raw.githubusercontent.com/ds2010/pyStoNED-Tutorials/master/Data/firms.csv'
    df = pd.read_csv(url, error_bad_lines=False)
    df.head(5)
    
    # output (total cost)
    y  = df['TOTEX']
    
    # inputs 
    x1  = df['Energy']
    x1  = np.asmatrix(x1).T
    x2  = df['Length']
    x2  = np.asmatrix(x2).T
    x3  = df['Customers']
    x3  = np.asmatrix(x3).T
    x   = np.concatenate((x1, x2, x3), axis=1)
    
    # Z variables
    z = df['PerUndGr']
    
    # import the CNLSZ module
    cet = "mult"
    fun = "cost"
    rts = "crs"
    
    model = CNLSZ.CNLSZ(y, x, z, cet, fun, rts)
    model.optimize()
    
    model.display_residual()
    

    StoNEDZ

    # import package pystoned
    from pystoned import StoNEDZ
    
    import pandas as pd
    import numpy as np
    
    # import Finnish electricity distribution firms data
    url = 'https://raw.githubusercontent.com/ds2010/pyStoNED-Tutorials/master/Data/firms.csv'
    df = pd.read_csv(url, error_bad_lines=False)
    df.head(5)
    
    # output (total cost)
    y  = df['TOTEX']
    
    # inputs 
    x1  = df['Energy']
    x1  = np.asmatrix(x1).T
    x2  = df['Length']
    x2  = np.asmatrix(x2).T
    x3  = df['Customers']
    x3  = np.asmatrix(x3).T
    x   = np.concatenate((x1, x2, x3), axis=1)
    
    # Z variables
    z = df['PerUndGr']
    
    # import the CNLSZ module
    cet = "mult"
    fun = "cost"
    rts = "crs"
    
    model = StoNEDZ.StoNEDZ(y, x, z, cet, fun, rts)
    model.optimize()
    
    model.display_residual()
    
    print(model.get_technical_inefficiency("MOM"))
    

    The models based on CNLS/StoNED are now available!

    • The implementation of get_frontier is in the next pr.
    • CNLSG and CNLSZG looks nice, maybe just a little modification to structure the files.
    • Maybe implement some well-know models for users, like StoNED+DDF.
    • Some other user functions can be provided, like marginal productivity.

    The models have not been refactored are below:

    • Free disposal hull
    • DEA/DEADDF
    opened by Fangop 7
  • feat(CNLS/CNLSDDF): Implementation of get_frontier.

    feat(CNLS/CNLSDDF): Implementation of get_frontier.

    The get_frontier function is for getting the value of estimated frontier(y value) by CNLS/CNLSDDF. Here is the some thought for better implementation of get_frontier. Please help me justify if my thought have some logical error.

    Since true y value = estimated y value + residual for additive models, we may implement the frontier like below:

    CNLS

    The fallowing y refer to the true y value; frontier refer to estimated y value.

    Additive

    frontier = y - residual
    

    Multiplicative

    frontier = y/(exp(residual)) -1
    

    CNLSDDF

    The fallowing y refer to the true y value; frontier refer to estimated y value.

    frontier list = y list - residual list
    
    opened by Fangop 4
  • feat(pyStoned): Implement data checking

    feat(pyStoned): Implement data checking

    This draft pr provides for pyStoNED. Both basic models and directional distance function based models are included. However, it is tricky to test all the circumstance of input. Hence this is just a draft pr.

    Please help me check if the message are providing clear information.

    I'm on the work for testing all the models, and trying to adapt DEA and FDH models to these checking. So, please do not merge this pr yet.

    opened by Fangop 3
  • feat(CNLS/tools): Implement basic error/exception system

    feat(CNLS/tools): Implement basic error/exception system

    Here is a draft for exception system.

    Sometimes, we comes to a situation that should stop the process and inform the users are defined as exceptions in python. Built-in Exceptions

    The error is included in exception. The pyStoNED brings in at least 2 types of exceptions here.

    Basic exception:

    Additive CNLS with CRS

    The additive CNLS model with CRS does not exist (or be needed). Hence when creating and additive CNLS model with CRS should raise an exception, since it is not an error but an exception of existing model.

    The following codes may halt and bring out an exception

    # import packages
    from pystoned import CNLS
    from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_CRS
    from pystoned.dataset import load_Finnish_electricity_firm
    
    # import Finnish electricity distribution firms data
    data = load_Finnish_electricity_firm(x_select=['Energy', 'Length', 'Customers'],
                                          y_select=['TOTEX'])
    
    # define and solve the CNLS model
    model = CNLS.CNLS(y=data.y, x=data.x, z=None,
                        cet = CET_ADDI, fun = FUN_PROD, rts = RTS_CRS)
    

    Please help me justify the discussion above and polish the exception message.

    Retrieving variables without optimization

    User should optimize the model before retrieving and printing any variables. If not, the program will halt the program and inform the users to optimize the model.

    The following codes may halt and bring out an exception

    # import packages
    from pystoned import CNLS
    from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
    from pystoned.dataset import load_Finnish_electricity_firm
    
    # import Finnish electricity distribution firms data
    data = load_Finnish_electricity_firm(x_select=['Energy', 'Length', 'Customers'],
                                          y_select=['TOTEX'])
    
    # define and solve the CNLS model
    model = CNLS.CNLS(y=data.y, x=data.x, z=None,
                        cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
    
    
    model.display_alpha()
    

    Value error:

    Construct model with unknown parameters

    User should construct a model with constant labels in pystoned.constant. If a random string is giving, the program will halt the program and inform the users the model parameter is not defined.

    This example construct a model with a random string as cet, causing the value error.

    from pystoned import CNLS
    from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
    from pystoned.dataset import load_Finnish_electricity_firm
    
    # import Finnish electricity distribution firms data
    data = load_Finnish_electricity_firm(x_select=['Energy', 'Length', 'Customers'],
                                          y_select=['TOTEX'])
    
    # define and solve the CNLS model
    model = CNLS.CNLS(y=data.y, x=data.x, z=None,
                        cet = "Not an CET label", fun = FUN_PROD, rts = RTS_VRS)
    

    Note: This does not affect the default setting.

    Invalid email address

    When users using remote optimization, the user may use incorrect string(not an email address and OPT_LOCAL label).

    This should leads to a halt and informs the user.

    # import packages
    from pystoned import CNLS
    from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
    from pystoned.dataset import load_Finnish_electricity_firm
    
    # import Finnish electricity distribution firms data
    data = load_Finnish_electricity_firm(x_select=['Energy', 'Length', 'Customers'],
                                          y_select=['TOTEX'])
    
    # define and solve the CNLS model
    model = CNLS.CNLS(y=data.y, x=data.x, z=None,
                        cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
    
    model.optimize(email="NotAnEmailAddress")
    

    Optimization multiplicative model without specifying solvers.

    When users using local optimization, the user should specify the solver for optimization.

    This should leads to a halt and informs the user to choose a installed solver.

    # import packages
    from pystoned import CNLS
    from pystoned.constant import CET_MULT, FUN_PROD, OPT_LOCAL, RTS_VRS
    from pystoned.dataset import load_Finnish_electricity_firm
    
    # import Finnish electricity distribution firms data
    data = load_Finnish_electricity_firm(x_select=['Energy', 'Length', 'Customers'],
                                          y_select=['TOTEX'])
    
    # define and solve the CNLS model
    model = CNLS.CNLS(y=data.y, x=data.x, z=None,
                        cet = CET_MULT, fun = FUN_PROD, rts = RTS_VRS)
    
    model.optimize(email=OPT_LOCAL)
    

    These modification is a draft for discussing error/exception types, situation, and the messages. Hence only the CNLS and the utils/tools module are modified as examples. Any other exceptions and errors can be included and discussed!

    Thanks!

    Note: This part may not be included in the document. Since the document should indicate the right way to use the program, and here is for prevention of wrong ways.

    opened by Fangop 3
  • Solver Binding Error

    Solver Binding Error

    Hello. Great work. I have been looking for something like this for a while.

    I am trying to run some examples but I am facing some issues with bindings ro the solver. Error message:

    "No Python bindings available for <class 'pyomo.solvers.plugins.solvers.mosek_direct.MOSEKDirect'> solver plugin"

    Any hints on how to solve this?

    opened by fmobrj 3
  • CNLSG: return then error when using the local solver

    CNLSG: return then error when using the local solver

    Hi @JulianATA, it seems that there is another bug in line 122 CNLSG. I have used the CNLSG to estimate the multiplicative cost function using a local solver MINOS, but it returns the following error:

    File "/home/dais2/anaconda3/lib/python3.8/site-packages/pystoned/CNLSG.py", line 122, in __convergence_test self.Active2[i, j] = - alpha[i] - np.sum(beta[i, :] * x[i, :]) + \ TypeError: bad operand type for unary -: 'NoneType'.

    Interestingly, when I using the 'NEOS' to solve the same model, there is no error, and I can receive the final estimation results. Further, there is no problem when we estimate the additive production function using the local solver MOSEK.

    Could you please help to check and fix it? Many thanks! For your convenience, please see the following example:

    Example

    import numpy as np
    import pandas as pd
    from pystoned import CNLSG
    from pystoned.constant import CET_MULT, FUN_COST, OPT_LOCAL, RTS_VRS
    
    
    url='https://raw.githubusercontent.com/ds2010/pyStoNED/master/pystoned/data/electricityFirms.csv'
    df = pd.read_csv(url, error_bad_lines=False)
    
    # output
    y = df['TOTEX']
    
    # inputs
    x1 = df['Energy']
    x1 = np.asmatrix(x1).T
    x2 = df['Length']
    x2 = np.asmatrix(x2).T
    x3 = df['Customers']
    x3 = np.asmatrix(x3).T
    x = np.concatenate((x1, x2, x3), axis=1)
    
    model = CNLSG.CNLSG(y, x, z=None, cet=CET_MULT, fun=FUN_COST, rts=RTS_VRS)
    model.optimize(OPT_LOCAL)
    
    model.display_beta()
    
    opened by ds2010 3
  • feat(dataset): Implement dataset support

    feat(dataset): Implement dataset support

    Hi, I recently considered about the example we used for testing pystoned could be a feature.

    This is inspired by sklearn, which provides user toy datasets for better comprehension of the usage/feature of the model. The toy datasets made sklearn the wildly used all over the world, since it is pretty easy to use/comprehend for the beginners.

    This pr reduce the complexity of the use of the datasets Original:

    import pandas as pd
    import numpy as np
    
    url = 'https://raw.githubusercontent.com/ds2010/pyStoNED-Tutorials/master/Data/firms.csv'
    df = pd.read_csv(url, error_bad_lines=False)
    df.head(5)
    
    # output
    y = df['Energy']
    
    # inputs
    x1 = df['OPEX']
    x1 = np.asmatrix(x1).T
    x2 = df['CAPEX']
    x2 = np.asmatrix(x2).T
    x = np.concatenate((x1, x2), axis=1)
    

    This pr:

    from pystoned import dataset
    
    x, y = dataset.firm(['OPEX', 'CAPEX'], 'Energy')
    

    This pr is not yet finished

    Please give me the information of the datasets, in order to:

    • making sure the datasets are used in rational way
    • give the user the brief introduction of the dataset
    • etc..

    thanks for your review, do not merge yet!

    opened by Fangop 3
  • API documentations

    API documentations

    The new pr #23 (Autodoc) works well locally but does not on the ReadTheDocs. You can check the CNLS API in the website generated by ReadTheDocs. It is empty. However, if we compile the sphinx locally using make html, the docstring will show in the HTML file. See the following screenshot.

    Screenshot from 2020-12-06 22-10-46

    I failed to fix it. Since the website is automatically generated by the ReadTheDocs, @JulianATA , could you please help me to fix it? Thanks in advance!

    opened by ds2010 2
Owner
Sheng Dai
Ph.D student in Management Science at Aalto University School of Business. My research area is productivity and efficiency analysis.
Sheng Dai
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022