Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Related tags

Deep Learninguclser20
Overview

Unsupervised Contrastive Learning of
Sound Event Representations

This repository contains the code for the following paper. If you use this code or part of it, please cite:

Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E. O'Connor, Xavier Serra, "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

arXiv slides poster blog post video

We propose to learn sound event representations using the proxy task of contrasting differently augmented views of sound events, inspired by SimCLR [1]. The different views are computed by:

  • sampling TF patches at random within every input clip,
  • mixing resulting patches with unrelated background clips (mix-back), and
  • other data augmentations (DAs) (RRC, compression, noise addition, SpecAugment [2]).

Our proposed system is illustrated in the figure.

system

Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels. Please check our paper for more details, or have a quicker look at our slide deck, poster, blog post, or video presentation (see links above).

This repository contains the framework that we used for our paper. It comprises the basic stages to learn an audio representation via unsupervised contrastive learning, and then evaluate the representation via supervised sound event classifcation. The system is implemented in PyTorch.

Dependencies

This framework is tested on Ubuntu 18.04 using a conda environment. To duplicate the conda environment:

conda create --name <envname> --file spec-file.txt

Directories and files

FSDnoisy18k/ includes folders to locate the FSDnoisy18k dataset and a FSDnoisy18k.py to load the dataset (train, val, test), including the data loader for contrastive and supervised training, applying transforms or mix-back when appropriate
config/ includes *.yaml files defining parameters for the different training modes
da/ contains data augmentation code, including augmentations mentioned in our paper and more
extract/ contains feature extraction code. Computes an .hdf5 file containing log-mel spectrograms and associated labels for a given subset of data
logs/ folder for output logs
models/ contains definitions for the architectures used (ResNet-18, VGG-like and CRNN)
pth/ contains provided pre-trained models for ResNet-18, VGG-like and CRNN
src/ contains functions for training and evaluation in both supervised and unsupervised fashion
main_train.py is the main script
spec-file.txt contains conda environment specs

Usage

(0) Download the dataset

Download FSDnoisy18k [3] from Zenodo through the dataset companion site, unzip it and locate it in a given directory. Fix paths to dataset in ctrl section of *.yaml. It can be useful to have a look at the different training sets of FSDnoisy18k: a larger set of noisy labels and a small set of clean data [3]. We use them for training/validation in different ways.

(1) Prepare the dataset

Create an .hdf5 file containing log-mel spectrograms and associated labels for each subset of data:

python extract/wav2spec.py -m test -s config/params_unsupervised_cl.yaml

Use -m with train, val or test to extract features from each subset. All the extraction parameters are listed in params_unsupervised_cl.yaml. Fix path to .hdf5 files in ctrl section of *.yaml.

(2) Run experiment

Our paper comprises three training modes. For convenience, we provide yaml files defining the setup for each of them.

  1. Unsupervised contrastive representation learning by comparing differently augmented views of sound events. The outcome of this stage is a trained encoder to produce low-dimensional representations. Trained encoders are saved under results_models/ using a folder name based on the string experiment_name in the corresponding yaml (make sure to change it).
CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_unsupervised_cl.yaml &> logs/output_unsup_cl.out
  1. Evaluation of the representation using a previously trained encoder. Here, we do supervised learning by minimizing cross entropy loss without data agumentation. Currently, we load the provided pre-trained models sitting in pth/ (you can change this in main_train.py, search for select model). We follow two evaluation methods:

    • Linear Evaluation: train an additional linear classifier on top of the pre-trained unsupervised embeddings.

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_lineval.yaml &> logs/output_lineval.out
      
    • End-to-end Fine Tuning: fine-tune entire model on two relevant downstream tasks after initializing with pre-trained weights. The two downstream tasks are:

      • training on the larger set of noisy labels and validate on train_clean. This is chosen by selecting train_on_clean: 0 in the yaml.
      • training on the small set of clean data (allowing 15% for validation). This is chosen by selecting train_on_clean: 1 in the yaml.

      After choosing the training set for the downstream task, run:

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_finetune.yaml &> logs/output_finetune.out
      

The setup in the yaml files should provide the best results reported in our paper. JFYI, the main flags that determine the training mode are downstream, lin_eval and method in the corresponding yaml (they are already adequately set in each yaml).

(3) See results:

Check the logs/*.out for printed results at the end. Main evaluation metric is balanced (macro) top-1 accuracy. Trained models are saved under results_models/models* and some metrics are saved under results_models/metrics*.

Model Zoo

We provide pre-trained encoders as described in our paper, for ResNet-18, VGG-like and CRNN architectures. See pth/ folder. Note that better encoders could likely be obtained through a more exhaustive exploration of the data augmentation compositions, thus defining a more challenging proxy task. Also, we trained on FSDnoisy18k due to our limited compute resources at the time, yet this framework can be directly applied to other larger datasets such as FSD50K or AudioSet.

Citation

@inproceedings{fonseca2021unsupervised,
  title={Unsupervised Contrastive Learning of Sound Event Representations},
  author={Fonseca, Eduardo and Ortego, Diego and McGuinness, Kevin and O'Connor, Noel E. and Serra, Xavier},
  booktitle={2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2021},
  organization={IEEE}
}

Contact

You are welcome to contact [email protected] should you have any question/suggestion. You can also create an issue.

Acknowledgment

This work is a collaboration between the MTG-UPF and Dublin City University's Insight Centre. This work is partially supported by Science Foundation Ireland (SFI) under grant number SFI/15/SIRG/3283 and by the Young European Research University Network under a 2020 mobility award. Eduardo Fonseca is partially supported by a Google Faculty Research Award 2018. The authors are grateful for the GPUs donated by NVIDIA.

References

[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in Int. Conf. on Mach. Learn. (ICML), 2020

[2] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. InterSpeech 2019

[3] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, X. Serra, "Learning Sound Event Classifiers from Web Audio with Noisy Labels", In proceedings of ICASSP 2019, Brighton, UK

Owner
Eduardo Fonseca
Returning research intern at Google Research | PhD candidate at Music Technology Group, Universitat Pompeu Fabra
Eduardo Fonseca
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022