Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch

Overview

Auditory Slow-Fast

This repository implements the model proposed in the paper:

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021

Project's webpage

arXiv paper

Citing

When using this code, kindly reference:

@ARTICLE{Kazakos2021SlowFastAuditory,
   title={Slow-Fast Auditory Streams For Audio Recognition},
   author={Kazakos, Evangelos and Nagrani, Arsha and Zisserman, Andrew and Damen, Dima},
           journal   = {CoRR},
           volume    = {abs/2103.03516},
           year      = {2021},
           ee        = {https://arxiv.org/abs/2103.03516},
}

Pretrained models

You can download our pretrained models on VGG-Sound and EPIC-KITCHENS-100:

  • Slow-Fast (EPIC-KITCHENS-100) link
  • Slow (EPIC-KITCHENS-100) link
  • Fast (EPIC-KITCHENS-100) link
  • Slow-Fast (VGG-Sound) link
  • Slow (VGG-Sound) link
  • Fast (VGG-Sound) link

Preparation

  • Requirements:
    • PyTorch 1.7.1
    • librosa: conda install -c conda-forge librosa
    • h5py: conda install h5py
    • wandb: pip install wandb
    • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
    • simplejson: pip install simplejson
    • psutil: pip install psutil
    • tensorboard: pip install tensorboard
  • Add this repository to $PYTHONPATH.
export PYTHONPATH=/path/to/auditory-slow-fast/slowfast:$PYTHONPATH
  • VGG-Sound:
    1. Download the audio. For instructions see here
    2. Download train.pkl (link) and test.pkl (link). I converted the original train.csv and test.csv (found here) to pickle files with column names for easier use
  • EPIC-KITCHENS:
    1. From the annotation repository of EPIC-KITCHENS-100 (link), download: EPIC_100_train.pkl, EPIC_100_validation.pkl, and EPIC_100_test_timestamps.pkl. EPIC_100_train.pkl and EPIC_100_validation.pkl will be used for training/validation, while EPIC_100_test_timestamps.pkl can be used to obtain the scores to submit in the AR challenge.
    2. Download all the videos of EPIC-KITCHENS-100 using the download scripts found here, where you can also find detailed instructions on using the scripts.
    3. Extract audio from the videos by running:
    python audio_extraction/extract_audio.py /path/to/videos /output/path 
    
    1. Save audio in HDF5 format by running:
    python audio_extraction/wav_to_hdf5.py /path/to/audio /output/hdf5/EPIC-KITCHENS-100_audio.hdf5
    

Training/validation on EPIC-KITCHENS-100

To train the model run (fine-tuning from VGG-Sound pretrained model):

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To train from scratch remove TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model.

You can also train the individual streams. For example, for training Slow run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOW_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To validate the model run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

To obtain scores on the test set run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth 
EPICKITCHENS.TEST_LIST EPIC_100_test_timestamps.pkl EPICKITCHENS.TEST_SPLIT test

Training/validation on VGG-Sound

To train the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations 

To validate the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

License

The code is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, found here.

Owner
Evangelos Kazakos
Evangelos Kazakos
The project aims to develop a personal-assistant for Windows & Linux-based systems

The project aims to develop a personal-assistant for Windows & Linux-based systems. Samiksha draws its inspiration from virtual assistants like Cortana for Windows, and Siri for iOS. It has been desi

SHUBHANSHU RAI 1 Jan 16, 2022
Learn chords with your MIDI keyboard !

miditeach miditeach is a music learning tool that can be used to practice your chords skills with a midi keyboard 🎹 ! Features Midi keyboard input se

Alexis LOUIS 3 Oct 20, 2021
DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers.

Project DeepSpeech DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Spee

Mozilla 20.8k Jan 03, 2023
α΄€ ʙᴏᴛ α΄›Κœα΄€α΄› α΄„α΄€Ι΄ α΄˜ΚŸα΄€Κ ᴍᴜꜱΙͺα΄„ ΙͺΙ΄ α΄›α΄‡ΚŸα΄‡Ι’Κ€α΄€α΄ Ι’Κ€α΄α΄œα΄˜ ᴏɴ ᴠᴏΙͺᴄᴇ α΄„α΄€ΚŸΚŸ

GJ516 LOVER'S Δ±Δ±llΔ±llΔ± β™₯️ βž€βƒGᴊ516_ᴍᴜꜱΙͺα΄„_ʙᴏᴛ β™₯️ Δ±llΔ±llΔ± α΄€ ʙᴏᴛ α΄›Κœα΄€α΄› α΄„α΄€Ι΄ α΄˜ΚŸα΄€Κ ᴍᴜꜱΙͺα΄„ ΙͺΙ΄ α΄›α΄‡ΚŸα΄‡Ι’Κ€α΄€α΄ Ι’Κ€α΄α΄œα΄˜ ᴏɴ ᴠᴏΙͺᴄᴇ α΄„α΄€ΚŸΚŸ Requirements πŸ“ FFmpeg NodeJS nodesou

1 Nov 22, 2021
Python library for audio and music analysis

librosa A python package for music and audio analysis. Documentation See https://librosa.org/doc/ for a complete reference manual and introductory tut

librosa 5.6k Jan 06, 2023
SinGlow: Generative Flow for SVS tasks in Tensorflow 2

SinGlow is a part of my Singing voice synthesis system. It can extract features of sound, particularly songs and musics. Then we can use these features (or perfect encoding) for feature migrating tas

Haobo Yang 8 Aug 22, 2022
A simple python script to play bell sound in your system infinitely, just for fun and experimental purposes

A simple python script to play bell sound in your system infinitely, just for fun and experimental purposes

نافع Ψ§Ω„Ω‡Ω„Ψ§Ω„ΩŠ 1 Oct 29, 2021
Inner ear models for Python

cochlea cochlea is a collection of inner ear models. All models are easily accessible as Python functions. They take sound signal as input and return

98 Jan 05, 2023
L-SpEx: Localized Target Speaker Extraction

L-SpEx: Localized Target Speaker Extraction The data configuration and simulation of L-SpEx. The code scripts will be released in the future. Data Gen

Meng Ge 20 Jan 02, 2023
Nayeli: cool telegram groups vc music project

Nayeli-music Nayeli πŸ₯€ is cool telegram 🍎 groups vc music project πŸŽ‹ . Nayeli-music Nayeli Deployment πŸŽ‹ πŸ“² Esy deploy 🐾️ Source Owner β™₯️ ❄️ He is s

Kasun bandara 2 Dec 20, 2021
Dataset and baseline code for the VocalSound dataset (ICASSP2022).

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition Introduction Citing Download VocalSound Dataset Details Baseline Experiment Contact

Yuan Gong 58 Jan 03, 2023
Spotifyd - An open source Spotify client running as a UNIX daemon.

Spotifyd An open source Spotify client running as a UNIX daemon. Spotifyd streams music just like the official client, but is more lightweight and sup

8.5k Jan 09, 2023
𝙰 π™Όπšžπšœπš’πšŒ π™±πš˜πš π™²πš›πšŽπšŠπšπšŽπš π™±πš’ πšƒπšŽπšŠπš–π™³πš•πš πŸ’–

TeamDltmusic 𝙰 π™Όπšžπšœπš’πšŒ π™±πš˜πš π™²πš›πšŽπšŠπšπšŽπš π™±πš’ πšƒπšŽπšŠπš–π™³πš•πš πŸ’– Deploy String Session String Click hear you can find string session OR join He

TeamDlt 5 Jan 18, 2022
A Music Player Bot for Discord Servers

A Music Player Bot for Discord Servers

Halil Acar 2 Oct 25, 2021
A Quick Music Player Made Fully in Python

Quick Music Player Made Fully In Python. Pure Python, cross platform, single function module with no dependencies for playing sounds. Installation & S

1 Dec 24, 2021
A telegram bot for which is help to play songs in vc πŸ₯° give 🌟 and fork this repo before use 😏

TamilVcMusic 🌟 TamilVCMusicBot 🌟 Give your πŸ’™ Before clicking on deploy to heroku just click on fork and star just below How to deploy Click the bel

TamilBots 150 Dec 13, 2022
SU Music Player β€” The first open-source PyTgCalls based Pyrogram bot to play music in voice chats

SU Music Player β€” The first open-source PyTgCalls based Pyrogram bot to play music in voice chats Note Neither this, or PyTgCalls are fully

SU Projects 58 Jan 02, 2023
ο»Ώο»ΏPythonic bindings for FFmpeg's libraries.

PyAV PyAV is a Pythonic binding for the FFmpeg libraries. We aim to provide all of the power and control of the underlying library, but manage the gri

PyAV 1.8k Jan 03, 2023
PianoPlayer - Automatic fingering generator for piano scores

PianoPlayer - Automatic fingering generator for piano scores

Marco Musy 571 Jan 02, 2023
DaisyXmusic ❀ A bot that can play music on Telegram Group and Channel Voice Chats

DaisyXmusic ❀ is the best and only Telegram VC player with playlists, Multi Playback, Channel play and more

TeamOfDaisyX 34 Oct 22, 2022