Object recognition using Azure Custom Vision AI and Azure Functions

Overview

Object recognition using Azure Custom Vision AI and Azure Functions

License: MIT Twitter: elbruno GitHub: elbruno

During the last couple of months, I’ve having fun with my new friends at home: 🐿️ 🐿️ 🐿️ . These little ones, are extremelly funny, and they literally don’t care about the cold 🥶 ❄️ ☃️ .

So, I decided to help them and build an Automatic Feeder using Azure IoT, a Wio Terminal and maybe some more devices. You can check the Azure IoT project here Azure IoT - Squirrel Feeder.

Once the feeder was ready, I decided to add a new feature to the scenario, detecting when a squirrel 🐿️ is nearby the feeder. In this repository I'll share:

  • How to create an object recognition model using Azure Custom Vision.
  • How to export the model to a Docker image format.
  • How to run the model in an Azure Function.

Custom Vision

Azure Custom Vision is an image recognition service that lets you build, deploy, and improve your own image identifier models. An image identifier applies labels (which represent classifications or objects) to images, according to their detected visual characteristics. Unlike the Computer Vision service, Custom Vision allows you to specify your own labels and train custom models to detect them.

The quickstart section contains step-by-step instructions that let you make calls to the service and get results in a short period of time.

You can use the images in the "CustomVision/Train/" directory in this repository to train your model.

Here is the model performing live recognition in action:

Exporting the model to a Docker image

Once the model was trained, you can export it to several formats. We will use a Linux Docker image format for the Azure Function.

The exported model has several files. The following list shows the files that we use in our Azure Function:

  • Dockerfile: the Dockerfile that will be used to build the image
  • app/app.py: the Python code that runs the model
  • app/labels.txt: The labels that the model recognizes
  • app/model.pb: The model definition
  • app/predict.py: the Python code that performs predictions on images

You can check the exported model in the "CustomVision/DockerLinuxExported/" directory in this repository.

Azure Function

Time to code! Let's create a new Azure Function Using Visual Studio Code and the Azure Functions for Visual Studio Code extension.

Changes to __ init __.py

The following code is the final code for the __ init __.py file in the Azure Function.

A couple of notes:

  • The function will receive a POST request with the file bytes in the body.
  • In order to use the predict file, we must import the predict function from the predict.py file using ".predict"
import logging
import azure.functions as func

# Imports for image procesing
import io
from PIL import Image
from flask import Flask, jsonify

# Imports for prediction
from .predict import initialize, predict_image

def main(req: func.HttpRequest) -> func.HttpResponse:
    logging.info('Python HTTP trigger function processed a request.')

    results = "{}"
    try:
        # get and load image from POST
        image_bytes = req.get_body()    
        image = Image.open(io.BytesIO(image_bytes))
        
        # Load and intialize the model and the app context
        app = Flask(__name__)
        initialize()

        with app.app_context():        
            # prefict image and process results in json string format
            results = predict_image(image)
            jsonresult = jsonify(results)
            jsonStr = jsonresult.get_data(as_text=True)
            results = jsonStr

    except Exception as e:
        logging.info(f'exception: {e}')
        pass 

    # return results
    logging.info('Image processed. Results: ' + results)
    return func.HttpResponse(results, status_code=200)

Changes to requirements.txt

The requirements.txt file will define the necessary libraries for the Azure Function. We will use the following libraries:

# DO NOT include azure-functions-worker in this file
# The Python Worker is managed by Azure Functions platform
# Manually managing azure-functions-worker may cause unexpected issues

azure-functions
requests
Pillow
numpy
flask
tensorflow
opencv-python

Sample Code

You can view a sample function completed code in the "AzureFunction/CustomVisionSquirrelDetectorFunction/" directory in this repository.

Testing the sample

Once our code is complete we can test the sample in local mode or in Azure Functions, after we deploy the Function. In both scenarios we can use any tool or language that can perform HTTP POST requests to the Azure Function to test our function.

Test using Curl

Curl is a command line tool that allows you to send HTTP requests to a server. It is a very simple tool that can be used to send HTTP requests to a server. We can test the local function using curl with the following command:

❯ curl http://localhost:7071/api/CustomVisionSquirrelDetectorFunction -Method 'Post' -InFile 01.jpg

Test using Postman

Postman is a great tool to test our function. You can use it to test the function in local mode and also to test the function once it has been deployed to Azure Functions. You can download Postman here.

In order to test our function we need to know the function url. In Visual Studio Code, we can get the url by clicking on the Functions section in the Azure Extension. Then we can right click on the function and select "Copy Function URL".

Now we can go to Postman and create a new POST request using our function url. We can also add the image we want to test. Here is a live demo, with the function running locally, in Debug mode in Visual Studio Code:

We are now ready to test our function in Azure Functions. To do so we need to deploy the function to Azure Functions. And use the new Azure Function url with the same test steps.

Additional Resources

You can check a session recording about this topic in English and Spanish.

These links will help to understand specific implementations of the sample code:

In my personal blog "ElBruno.com", I wrote about several scenarios on how to work and code with Custom Vision.

Author

👤 Bruno Capuano

🤝 Contributing

Contributions, issues and feature requests are welcome!

Feel free to check issues page.

Show your support

Give a ⭐️ if this project helped you!

📝 License

Copyright © 2021 Bruno Capuano.

This project is MIT licensed.


Owner
El Bruno
Sr Cloud Advocate @Microsoft, former Microsoft MVP (14 years!), lazy runner, lazy podcaster, technology enthusiast
El Bruno
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022