A robust pointcloud registration pipeline based on correlation.

Related tags

Deep Learningphaser
Overview

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration

Ubuntu 18.04+ROS Melodic: Build Status


Overview

Pointcloud registration using correspondences is inefficient and prone to errors in the many steps of correspondence extraction, description, and matching. Similarly, the most widespread registration methods work only locally, requiring an initial guess already close to the true solution, something unaffordable in real robotic deployments. We propose an algorithm for the registration of partially overlapping pointclouds that operates at the global level and on the raw data, i.e., no initial guess as well as no candidate matches are required. We exploit the properties of Fourier analysis to derive a novel registration pipeline based on the cross-correlation of the phases.

Packages

PHASER is composed of the following packages:

  • phaser_core: The registration core of PHASER. Contains the spherical and spatial correlation.
  • phaser_ros: This is a ROS wrapper to use the PHASER as a registration framework. Hardly used anymore.
  • phaser_common: Exposes common classes, utils and models.
  • phaser_pre: Experimental preprocessing of pointcloud data.
  • phaser_viz: Provides visualization functions.
  • phaser_test_data: Contains example data as PLYs.
  • phaser_share: Provides run and build scripts.

Installation

PHASER requires ROS and some other dependencies to be installed:

Dependencies

  # Some standard requirements
  sudo apt-get install -y doxygen autotools-dev \
     dh-autoreconf libboost-all-dev python-setuptools git g++ cppcheck \
     libgtest-dev python-git pylint \
     python-termcolor liblog4cplus-dev cimg-dev python-wstool \
     python-catkin-tools \

   # Ubuntu 18.04 / ROS Melodic.
   sudo apt-get install -y clang-format-6.0 ros-melodic-pcl-conversions \
     libpcl-dev libnlopt-dev \

Important: Currently, PHASER also requires nvcc for compilation as most-recent experiments deal with performing the FFTs on the GPU.

For the remaining package dependencies, run within the caktin workspace

  wstool init
  wstool merge phaser/dependencies.rosinstall
  wstool update

Building the project:

  catkin build phaser_ros

Optionally one can build an run all unit tests using:

  ./phaser_share/run_build_tests

However, this might take some minutes to finish.

Example

The package phaser_core provides a simple test driver to run PHASER using two pointclouds stored as .ply files. Additionally, run script for the test driver is provided in the phaser_share directory.

The initial alignment of the two pointclouds is as follows: PHASER Input Example

By running

./phaser_share/run_phaser_core_driver

the registered pointcloud is written to disk as registered.ply. You might need to adapt the source and target pointcloud paths. Furthermore, other pointcloud examples can be found in the phaser_test_data/test_clouds/os0/ directory.

In this particular case, the registration is configured to be very fine. Thus, it will take a few seconds to finish: PHASER Registered Example

Development Guidelines

Reference

Our paper is available at
Bernreiter, Lukas, Lionel Ott, Juan Nieto, Roland Siegwart, and Cesar Cadena. "PHASER: A Robust and Correspondence-Free Global Pointcloud Registration." IEEE Robotics and Automation Letters 6, no. 2 (2021): 855-862. [Link] [ArXiv].

BibTex:

@article{bernreiter2021phaser,
  title={PHASER: A Robust and Correspondence-Free Global Pointcloud Registration},
  author={Bernreiter, Lukas and Ott, Lionel and Nieto, Juan and Siegwart, Roland and Cadena, Cesar},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={855--862},
  year={2021},
  publisher={IEEE}
}
Owner
ETHZ ASL
ETHZ ASL
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022