A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

Overview

c is for Camera

A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

The purpose of this project is to explore and understand the logic in the mechanisms of a camera by using object-oriented programming to represent real-world objects. It's also a way to appreciate the intricate mechanical logic embodied in a device like a camera.

'Canonet G-III QL17'

It aims towards completeness in its modelling of the real world. For example, if you open the back of the camera in daylight with a partially exposed film, it will ruin the film.

See the c is for Camera documentation.

A quick tour

Clone the repository:

git clone https://github.com/evildmp/C-is-for-Camera.git

or:

git clone [email protected]:evildmp/C-is-for-Camera.git

In the C-is-for-Camera directory, start a Python 3 shell.

>>> from camera import Camera
>>> c = Camera()

See the camera's state:

>>> c.state()
================== Camera state =================

------------------ Controls ---------------------
Selected speed:            1/120

------------------ Mechanical -------------------
Back closed:               True
Lens cap on:               False
Film advance mechanism:    False
Frame counter:             0
Shutter cocked:            False
Shutter timer:             1/128 seconds
Iris aperture:             ƒ/16
Camera exposure settings:  15.0 EV

------------------ Metering ---------------------
Light meter reading:        4096 cd/m^2
Exposure target:            15.0 EV
Mode:                       Shutter priority
Battery:                    1.44 V
Film speed:                 100 ISO

------------------ Film -------------------------
Speed:                      100 ISO
Rewound into cartridge:     False
Exposed frames:             0 (of 24)
Ruined:                     False

------------------ Environment ------------------
Scene luminosity:           4096 cd/m^2

Advance the film:

>>> c.film_advance_mechanism.advance()
On frame 0 (of 24)
Advancing film
On frame 1 (of 24)
Cocking shutter
Cocked

Release the shutter:

>>> c.shutter.trip()
Shutter openening for 1/128 seconds
Shutter closes
Shutter uncocked
'Tripped'

It's not possible to advance the mechanism twice without releasing the shutter:

>>> c.film_advance_mechanism.advance()
On frame 1 (of 24)
Advancing film
On frame 2 (of 24)
Cocking shutter
Cocked
>>> c.film_advance_mechanism.advance()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/daniele/Repositories/camera/camera.py", line 56, in advance
    raise self.AlreadyAdvanced
camera.AlreadyAdvanced

If you open the back in daylight it ruins the film:

>>> c.back.open()
Opening back
Resetting frame counter to 0
'Film is ruined'

Close the back and rewind the film:

>>> c.back.close()
Closing back
>>> c.film_rewind_mechanism.rewind()
Rewinding film
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022