CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

Related tags

Text Data & NLPCCQA
Overview

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training

This is the official repository for the code and models of the paper CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training. If you use our dataset, code or any parts thereof, please cite this paper:

@misc{huber-etal-2021-ccqa,
  title={CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training}, 
  author={Patrick Huber and Armen Aghajanyan and Barlas Oğuz and Dmytro Okhonko and Wen-tau Yih and Sonal Gupta and Xilun Chen},
  year={2021},
  eprint={2110.07731},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}

Getting Common Crawl Snapshots

The Common Crawl project provides monthly web snapshots of new and updates websites in raw HTML format. Every monthly snapshot (~50-70TB) is further separated into smaller WARC (Web ARChive) files. To download a single WARC file, go to the Common Crawl website for the respective month (e.g. May 2021) and download the WARC paths file. The downloaded WARC paths file contains a \newline separated list of download destination of the actual files. Pick a path and prepend s3://commoncrawl/ or https://commoncrawl.s3.amazonaws.com/ for the complete URL. Once downloaded, gunzip the archive and a single Common Crawl web archive is ready to be processed.

Dataset Generation

Dependencies

Below are the required dependencies to run the dataset generation, curation and model evaluations.

  • Rust
  • Rust packages: clap, html-escape, indicatif, kuchiki, rayon, regex, serde, serde_json, warc (see Cargo.toml file for versions)
  • Python 3.7.3
  • Python dependencies: fasttext language identification, fasttext==0.9.2, lxml==4.3.2

Processing Common Crawl data (Rust)

  • Build the cargo package with cargo build from within the rust folder
  • Run the script with cargo run <path/to/warc/file> <path/to/output/file.mhtml>

Curating the minified HTML data (Python)

To generate json objects for every webpage in the minified HTML, run

python mhtml_to_json.py <path/to/fasttext/lid.176.bin> <path/to/mhtml/file> <path/to/output/file>

Aggregating datapoints to remove duplicate URL entries (Python)

As mentioned in the paper, we use the original dataset for our in-domain pre-training experiments. However, we also provide a cleaned version of the dataset, aggregating same-URL duplicates into a single object. To run the datapoint aggregation script, execute

python json_duplicate_filter.py <path/to/json/file> <path/to/output/file>

Converting json dataset into closed-book and passage retrieval formats (Python)

To be able to train closed-book (sequence-to-sequence) and passage retrieval (DPR) models on the CCQA dataset, the corpus needs to be further processed

Closed-book processing

To prepare the dataset for closed-book question-answering training, run:

python closed_book_processing.py <path/to/json/file> <path/to/output/file> <--only_english> <--keep_markup>

Passage retrieval (DPR) processing

To prepare the dataset for passage rertieval (DPR) training, run:

python passage_retrieval_processing.py <path/to/json/file> <path/to/output/file> <--only_english> <--keep_markup>

CCQA In-Domain Pre-Trained Model Checkpoints

BART and T5 checkpoints are Huggingface transformer models tested with transformers version 4.8.2

The DPR model checkpoint can be downloaded for the original DPR codebase or the DPR v2 codebase

LICENSE

The majority of CCQA is licensed under CC-BY-NC, however portions of the project are available under separate license terms: crowbook-text-processing is licensed under the MPL-2.0 license.

Owner
Meta Research
Meta Research
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 89 Dec 18, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Jarvis is a simple Chatbot with a GUI capable of chatting and retrieving information and daily news from the internet for it's user.

J.A.R.V.I.S Kindly consider starring this repository if you like the program :-) What/Who is J.A.R.V.I.S? J.A.R.V.I.S is an chatbot written that is bu

Epicalable 50 Dec 31, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
A cross platform OCR Library based on PaddleOCR & OnnxRuntime

A cross platform OCR Library based on PaddleOCR & OnnxRuntime

RapidOCR Team 767 Jan 09, 2023
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022