This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

Overview

NORESQA: Speech Quality Assessment using Non-Matching References

This is a Pytorch implementation for using NORESQA. It contains minimal code to predict speech quality using NORESQA. Please see our Neurips 2021 paper referenced below for details.

Minimal basic usages as Speech Quality Assessment Metric.

Setup and basic usage

Required python libraries (latest): Pytorch with GPU support + Scipy + Numpy (>=1.14) + Librosa. Install all dependencies in a conda environment by using:

conda env create -f requirements.yml

Activate the created environment by:

conda activate noresqa

Additional notes:

  • Warning: Make sure your libraries (Cuda, Cudnn,...) are compatible with the pytorch version you're using or the code will not run.
  • Tested on Nvidia GeForce RTX 2080 GPU with Cuda (>=9.2) and CuDNN (>=7.3.0). CPU mode should also work.
  • The current pretrained models support sampling rate = 16KHz. The provided code automatically resamples the recording to 16KHz.

Please run the metric by using:

usage:

python main.py --GPU_id -1 --mode file --test_file path1 --nmr path2

arguments:
--GPU_id         [-1 or 0,1,2,3,...] specify -1 for CPU, and 0,1,2,3 .. as gpu numbers
--mode           [file,list] using single nmr or a list of nmr
--test_file      [path1] -> path of the test recording
--nmr            [path2 of file, or txt file with filenames]

The default output of the code should look like:

Probaility of the test speech cleaner than the given NMR = 0.11526459
NORESQA score of the test speech with respect to the given NMR = 18.595860697038006

Some GPU's are non-deterministic, and so the results could vary slightly in the lsb.

Please also note that the model inherently works when the size of the input recordings are same. If they are not, then the size of the reference recording is adjusted to match the size of the test recording.

Please see main.py for more information on how to use this for your task.

Citation

If you use this repository, please use the following to cite.

@inproceedings{
manocha2021noresqa,
title={{NORESQA}: A Framework for Speech Quality Assessment using Non-Matching References},
author={Pranay Manocha and Buye Xu and Anurag Kumar},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=RwASmRpLp-}
}

License

The majority of NORESQA is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Librosa is licensed under the ISC license; Pytorch and Numpy are licensed under the BSD license; Scipy and Scikit-learn is licensed under the BSD-3; Libsndfile is licensed under GNU LGPL; Pyyaml is licensed under MIT License.

Owner
Meta Research
Meta Research
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
小布助手对话短文本语义匹配的一个baseline

oppo-text-match 小布助手对话短文本语义匹配的一个baseline 模型 参考:https://kexue.fm/archives/8213 base版本线下大概0.952,线上0.866(单模型,没做K-flod融合)。 训练 测试环境:tensorflow 1.15 + keras

苏剑林(Jianlin Su) 132 Dec 14, 2022
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Data preprocessing rosetta parser for python

datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,

ASReview hackathon for Follow the Money 2 Nov 28, 2021
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022