Modelling the 30 salamander problem from `Pure Mathematics` by Martin Liebeck

Overview

Salamanders on an island

The Problem

From A Concise Introduction to Pure Mathematics By Martin Liebeck

Critic Ivor Smallbrain is watching the horror movie Salamanders on a Desert Island. In the film, there are 30 salamanders living on a desert island: 15 are red, 7 blue and 8 green. When two of a different colour meet, horrifyingly they both change into the third colour. (For example, if a red and a green meet, they both become blue.) When two of the same colour meet, they change into both of the other colours. (For example, if two reds meet, one becomes green and one becomes blue.) It is all quite terrifying. In between being horrified and terrified, Ivor idly wonders whether it could ever happen that at some instant in the future, all of the salamanders would be red. Can you help him ? (Hint: Consider the remainders of the totals of each colour when you divide by 3.)

Simulate the problem

import numpy as np
import random

Create the starting salamander population

pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array
all_col = set(pop) # Create set of all possible colours

pop
array(['R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R',
       'R', 'R', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'G', 'G', 'G', 'G',
       'G', 'G', 'G', 'G'], dtype='
   

Define a function for a random meeting

def meeting(gd = False):
    """
    Simulate meeting of 2 salamnders.
    Each is chosen at random from the list (without replacement)
    `gd = True` applies a proxy of gradient descent optimisation, avoiding reduction in the number of red salamanders
    """

    # Pick 2 salamanders at random
    rand_ind = random.sample(range(pop.size), 2)
    rand_sam = pop[rand_ind]

    x = rand_sam[0]
    y = rand_sam[1]

    # Apply gradient descent - skip the meeting if a red is selected, to avoid reducng the Reds number
    # (Note this is a gd proxy to reduce computation - it "should" be applied on the result of calculation rather than the input)
    if gd == True:
        if (x == 'R') | (y == 'R'): return

    # Find the colour(s) not selected
    diff = list(all_col.difference(rand_sam))
    
    # The salamanders are the same colour
    if x == y: 
        x = diff[0]
        y = diff[1]
    else: # The salamanders are different colour
        x = diff[0]
        y = x

    # Change the colours of the chosen salamanders
    pop[rand_ind[0]] = x
    pop[rand_ind[1]] = y

Run 1 million simulations

# Set number of meetings to simulate
iters = 1000000

# Run simulation of meetings
from collections import Counter
from tqdm.notebook import tqdm

random.seed(2718)
tracker = dict()
for i in tqdm(range(iters), miniters=iters/100):
    # Simulate a meeting
    meeting()
    # Save resulting population state
    tracker[i] = Counter(pop)
  0%|          | 0/1000000 [00:00

Analysis

The question posed gives a (big) hint to using modular arithmetic to assess this problem. A sample of the results is therefore taken and visualised in mod 3.

Sample first 100 results in modulo 3

# Sample the first 100 meetings to visualise progress
track_vals = list(tracker.values())
track_vals = track_vals[:100]

# Create a list of each colour in mod 3
r = []
b = []
g = []
for i in range(len(track_vals)):
    r.append(list(track_vals)[i]['R'] %3)
    b.append(list(track_vals)[i]['B'] %3)
    g.append(list(track_vals)[i]['G'] %3)
# Plot graph of population change in mod 3
import pylab as plt
from matplotlib.pyplot import figure
%matplotlib inline

figure(figsize=(25, 4), dpi=100)
plt.rcParams.update({'font.size': 15})

plt.plot(range(len(b)), b, 'b')
plt.plot(range(len(r)), r, 'r')
plt.plot(range(len(g)), g, 'g')
plt.title('Total Quantity of Salamanders in mod 3')
Text(0.5, 1.0, 'Total Quantity of Salamanders in mod 3')

png

Modulus importance

# Prepare some data for explanation
import pandas as pd
meet_s = [['-2','+1','+1']]
meet_s_mod = [['+1','+1','+1']]
meet_d = [['-1','-1','+2']]
meet_d_mod = [['+2','+2','+2']]

We observe that the red, blue, and green numbers are always different, and hold either a value of 0, 1, or 2 in mod3. This is important, as for there to be 30 Red salamanders, there need to be 0 Blue and 0 Green (total population is 30). In mod3, this would be equivalent to 0R, 0B, and 0G. In other words, for there to be all Red salamanders, there needs to be a combination of meetings such that all colours reach 0 (mod3). In this small sample, we can see that the values of each are always different in mod 3. Why is this?

The starting position of the population is 15R, 7B, and 8G. In mod3, this equates to 0R, 1B and 2G. Upon two salamanders of the same colour, x, meeting, we get a drop in 2 of that colour, and an increase of 1 for the other two colours, y and z:

pd.DataFrame(meet_s, ['xx'], ['x', 'y', 'z'])
x y z
xx -2 +1 +1

In mod3, this is equivalent to:

pd.DataFrame(meet_s_mod, ['xx'], ['x', 'y', 'z'])
x y z
xx +1 +1 +1

We see that for whichever colour, if the salamanders are the same colour, the same mathematical addition applies to all colours in mod3, such that there is no convergence between colours.
Two salamanders of different colour meeting results in:

pd.DataFrame(meet_d, ['xy'], ['x', 'y', 'z'])
x y z
xy -1 -1 +2

In mod3, this is rewritten:

pd.DataFrame(meet_d_mod, ['xy'], ['x', 'y', 'z'])
x y z
xy +2 +2 +2

Again, where salamander colours are different, there is no convergence between colours in mod3.

This exhausts all meeting possibilities, and shows there is no possibility of convergence between quantities of each colour in mod3. With this being the case, it is impossible for all to reach 0 (mod3). This means that there can never be 30 Red salamanders.

However, 29R is possible, with 0B and 1G. This maintains the count structure in mod3 as this would be 2R, 0B, 1G (mod3).

Total Reds

Max Reds

# Show how the number of reds changes over trials
r_vals = []
for trial in tracker.values():
    r_vals.append(trial['R'])

graph_len = np.min([250,len(r_vals)])
mov_max = int(np.ceil(len(r_vals)/graph_len))

red_mov_max = []
for i in range(graph_len):
    red_mov_max.append(np.max(r_vals[i*mov_max:(i+1)*mov_max]))

figure(figsize=(25, 4))
plt.plot(range(graph_len), red_mov_max, 'r')
plt.title('Max Quantity of Red Salamanders every ' + str(mov_max) + ' trials')
Text(0.5, 1.0, 'Max Quantity of Red Salamanders every 4000 trials')

png

We observe that even over 1 million trials, the maximum number of Red salamanders never reaches 29. This suggests that whilst 29R is a possibility, it is highly unlikely to occur through the random sampling used.

Frequency of Red count

# Count frequency of Reds quantities over the trials
import seaborn as sns

figure(figsize=(18, 7))
sns.set_style('darkgrid')
sns.histplot(r_vals, color='r')
plt.title('Histogram of Total Quantity of Red Salamanders')
Text(0.5, 1.0, 'Histogram of Total Quantity of Red Salamanders')

png

We observe that the histogram shows a bell-like curve of distribution. As may be expected, the modal number of Reds is 10, or 1/3 of the total population. This reflects that with more Reds present in the population, there is a higher probability of a Red being selected and therefore the number of Reds being reduced. The opposite can be observed below this level, and a similar graph would be expected for Blues and Greens.
We can see that the graph tails off drastically above 20R - if we were to assume that the number of Reds is approximately normally distributed, we could estimate the probability of getting the maximum number of Reds (29).

from scipy.stats import norm
mean = np.mean(r_vals)
std = np.std(r_vals)

norm.pdf(29, loc=mean, scale=std)
4.750575739333807e-12

This result suggests that, as a rough figure, even if we simulated 210 billion meetings, there would still be about a 37% chance (1/$e$) we would not reach the maximum of 29 Reds at any point!

NB: This is only if assuming a normal distribution, which the bounded data does not strictly fit.

Optimising the algorithm

Initially, we used a random choice of 2 salamanders at each meeting. However, it may be possible to optimise this process to reach 29R far quicker. If we only allow for meetings that increase the number of Reds, i.e. apply a gradient descent optimisation, we should reach our target in far fewer iterations.

# Reset population to the original starting point
pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array

# Set max number of iterations to 1000
iters = 1000

r_vals = []
for i in tqdm(range(iters)):
    # Simulate a meeting
    meeting(gd = True) # Set `gd = True` for gradient descent
    # Save resulting population state
    counter = Counter(pop)
    r_vals.append(counter['R'])
    # Stop if 29R is reached
    if counter['R'] == 29: break
  0%|          | 0/1000 [00:00
# Show how the number of reds changes over trials
figure(figsize=(18, 7))
plt.plot(range(len(r_vals)), r_vals, 'r')
plt.title('Total Quantity of Red Salamanders (Optimised Algorithm)')
Text(0.5, 1.0, 'Total Quantity of Red Salamanders (Optimised Algorithm)')

png

We can see that with the optimised algorithm, the maximum number of possible Reds, 29, was reached in under 1000 iterations.

Owner
Faisal Jina
- Data Science - Healthcare - Business - https://faisaljina.github.io
Faisal Jina
Holographic Declarative Memory for Python ACT-R

HDM This is the repository for the Holographic Declarative Memory (HDM) module for Python ACT-R. This repository contains: documentation: a paper, con

Carleton Cognitive Modeling Lab 1 Jan 17, 2022
Collection of system-wide scripts that I use on my Gentoo

linux-scripts Collection of scripts that I use on my Gentoo machine. I tend to put all scripts in /scripts directory. It is not likely that you would

Xoores 1 Jan 09, 2022
NBT-Project: This is a APP for building NBT's

NBT-Project This is an APP for building NBT's When using this you select a box on kit maker You input the name and enchant in there related boxes Then

1 Jan 21, 2022
DD监控室第一版

DD监控室 运行指南

执明神君 1.2k Dec 31, 2022
A minimalist production ready plugin system

pluggy - A minimalist production ready plugin system This is the core framework used by the pytest, tox, and devpi projects. Please read the docs to l

pytest-dev 876 Jan 05, 2023
Py-Parser est un parser de code python en python encore en plien dévlopement.

PY - PARSER Py-Parser est un parser de code python en python encore en plien dévlopement. Une fois achevé, il servira a de nombreux projets comme glad

pf4 3 Feb 21, 2022
Shows a pixel art of any Pokémon in your terminal!

pokemon-icat This script is inspired by this project, but since the output heavily depends on the font of your terminal, i decided to make a script th

ph04 52 Dec 22, 2022
validation for pre-commit.ci configuration

pre-commit-ci-config validation for pre-commit.ci configuration installation pip install pre-commit-ci-config api pre_commit_ci_config.SCHEMA a cfgv s

pre-commit.ci 17 Jul 11, 2022
Beancount: Double-Entry Accounting from Text Files.

beancount: Double-Entry Accounting from Text Files Contents Description Documentation Download & Installation Versions Filing Bugs Copyright and Licen

2.3k Dec 28, 2022
使用clash核心,对服务器进行Netflix解锁批量测试。

注意事项 测速及解锁测试仅供参考,不代表实际使用情况,由于网络情况变化、Netflix封锁及ip更换,测速具有时效性 本项目使用 Python 编写,使用前请完成环境安装 首次运行前请安装pip及相关依赖,也可使用 pip install -r requirements.txt 命令自行安装 Net

11 Dec 07, 2022
Track testrail productivity in automated reporting to multiple teams

django_web_app_for_testrail testrail is a test case management tool which helps any organization to track all consumption and testing of manual and au

Vignesh 2 Nov 21, 2021
NGEBUG is a tool that sends viruses to victims

Ngebug NGEBUG adalah tools pengirim virus ke korban NGEBUG adalah tools virus terbaru yang berasal dari rusia Informasi lengkap ada didalam tools Run

Profesor Acc 3 Dec 13, 2021
propuestas electorales de los candidatos a constituyentes, Chile 2021

textos-constituyentes propuestas electorales de los candidatos a constituyentes, Chile 2021 Programas descargados desde https://elecciones2021.servel.

Sergio Lucero 6 Nov 19, 2021
A Python script to parse Fortinet products serial numbers, and detect the associated model and version.

ParseFortinetSerialNumber A Python script to parse Fortinet products serial numbers, and detect the associated model and version. Example $ ./ParseFor

Podalirius 10 Oct 28, 2022
A python script for practicing Toki Pona.

toki.py A python script for practicing Toki Pona. Modified from a hirigana script by ~vilmibm. Example of the script running: $ ./toki.py This script

Dustin 2 Dec 09, 2021
Navigate to your directory of choice the proceed as follows

Installation 🚀 Navigate to your directory of choice the proceed as follows; 1 .Clone the git repo and create a virtual environment Depending on your

Ondiek Elijah Ochieng 2 Jan 31, 2022
Python script to autodetect a base set of swiftlint rules.

swiftlint-autodetect Python script to autodetect a base set of swiftlint rules. Installation brew install pipx

Jonathan Wight 24 Sep 20, 2022
A simple app that helps to train quick calculations.

qtcounter A simple app that helps to train quick calculations. Usage Manual Clone the repo in a folder using git clone https://github.com/Froloket64/q

0 Nov 27, 2021
A module that can manage you're gtps

Growtopia Private Server Controler Module For Controle Your GTPS | Build in Python3 Creator Information

iFanpS 6 Jan 14, 2022
Simple Calculator Mobile Apps

Simple Calculator Mobile Apps Screenshoot If you want to try it please click the link below to download, this application is 100% safe no virus. link

0 Sep 24, 2022