Deep Networks with Recurrent Layer Aggregation

Related tags

Deep LearningRLANet
Overview

RLA-Net: Recurrent Layer Aggregation

Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation

This is an implementation of RLA-Net (accept by NeurIPS-2021, paper).

RLANet

Introduction

This paper introduces a concept of layer aggregation to describe how information from previous layers can be reused to better extract features at the current layer. While DenseNet is a typical example of the layer aggregation mechanism, its redundancy has been commonly criticized in the literature. This motivates us to propose a very light-weighted module, called recurrent layer aggregation (RLA), by making use of the sequential structure of layers in a deep CNN. Our RLA module is compatible with many mainstream deep CNNs, including ResNets, Xception and MobileNetV2, and its effectiveness is verified by our extensive experiments on image classification, object detection and instance segmentation tasks. Specifically, improvements can be uniformly observed on CIFAR, ImageNet and MS COCO datasets, and the corresponding RLA-Nets can surprisingly boost the performances by 2-3% on the object detection task. This evidences the power of our RLA module in helping main CNNs better learn structural information in images.

RLA module

RLA_module

Changelog

  • 2021/04/06 Upload RLA-ResNet model.
  • 2021/04/16 Upload RLA-MobileNetV2 (depthwise separable conv version) model.
  • 2021/09/29 Upload all the ablation study on ImageNet.
  • 2021/09/30 Upload mmdetection files.
  • 2021/10/01 Upload pretrained weights.

Installation

Requirements

Our environments

  • OS: Linux Red Hat 4.8.5
  • CUDA: 10.2
  • Toolkit: Python 3.8.5, PyTorch 1.7.0, torchvision 0.8.1
  • GPU: Tesla V100

Please refer to get_started.md for more details about installation.

Quick Start

Train with ResNet

- Use single node or multi node with multiple GPUs

Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either single node or multi node data parallel training.

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

- Specify single GPU or multiple GPUs

CUDA_VISIBLE_DEVICES={device_ids} python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

Testing

To evaluate the best model

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 --resume {path to the best model} -e {imagenet-folder with train and val folders}

Visualizing the training result

To generate acc_plot, loss_plot

python eval_visual.py --log-dir {log_folder}

Train with MobileNet_v2

It is same with above ResNet replace train.py by train_light.py.

Compute the parameters and FLOPs

If you have install thop, you can paras_flops.py to compute the parameters and FLOPs of our models. The usage is below:

python paras_flops.py -a {model_name}

More examples are shown in examples.md.

MMDetection

After installing MMDetection (see get_started.md), then do the following steps:

  • put the file resnet_rla.py in the folder './mmdetection/mmdet/models/backbones/', and do not forget to import the model in the init.py file.
  • put the config files (e.g. faster_rcnn_r50rla_fpn.py) in the folder './mmdetection/configs/base/models/'
  • put the config files (e.g. faster_rcnn_r50rla_fpn_1x_coco.py) in the folder './mmdetection/configs/faster_rcnn'

Note that the config files of the latest version of MMDetection are a little different, please modify the config files according to the latest format.

Experiments

ImageNet

Model Param. FLOPs Top-1 err.(%) Top-5 err.(%) BaiduDrive(models) Extract code GoogleDrive
RLA-ResNet50 24.67M 4.17G 22.83 6.58 resnet50_rla_2283 5lf1 resnet50_rla_2283
RLA-ECANet50 24.67M 4.18G 22.15 6.11 ecanet50_rla_2215 xrfo ecanet50_rla_2215
RLA-ResNet101 42.92M 7.79G 21.48 5.80 resnet101_rla_2148 zrv5 resnet101_rla_2148
RLA-ECANet101 42.92M 7.80G 21.00 5.51 ecanet101_rla_2100 vhpy ecanet101_rla_2100
RLA-MobileNetV2 3.46M 351.8M 27.62 9.18 dsrla_mobilenetv2_k32_2762 g1pm dsrla_mobilenetv2_k32_2762
RLA-ECA-MobileNetV2 3.46M 352.4M 27.07 8.89 dsrla_mobilenetv2_k32_eca_2707 9orl dsrla_mobilenetv2_k32_eca_2707

COCO 2017

Model AP AP_50 AP_75 BaiduDrive(models) Extract code GoogleDrive
Fast_R-CNN_resnet50_rla 38.8 59.6 42.0 faster_rcnn_r50rla_fpn_1x_coco_388 q5c8 faster_rcnn_r50rla_fpn_1x_coco_388
Fast_R-CNN_ecanet50_rla 39.8 61.2 43.2 faster_rcnn_r50rlaeca_fpn_1x_coco_398 f5xs faster_rcnn_r50rlaeca_fpn_1x_coco_398
Fast_R-CNN_resnet101_rla 41.2 61.8 44.9 faster_rcnn_r101rla_fpn_1x_coco_412 0ri3 faster_rcnn_r101rla_fpn_1x_coco_412
Fast_R-CNN_ecanet101_rla 42.1 63.3 46.1 faster_rcnn_r101rlaeca_fpn_1x_coco_421 cpug faster_rcnn_r101rlaeca_fpn_1x_coco_421
RetinaNet_resnet50_rla 37.9 57.0 40.8 retinanet_r50rla_fpn_1x_coco_379 lahj retinanet_r50rla_fpn_1x_coco_379
RetinaNet_ecanet50_rla 39.0 58.7 41.7 retinanet_r50rlaeca_fpn_1x_coco_390 adyd retinanet_r50rlaeca_fpn_1x_coco_390
RetinaNet_resnet101_rla 40.3 59.8 43.5 retinanet_r101rla_fpn_1x_coco_403 p8y0 retinanet_r101rla_fpn_1x_coco_403
RetinaNet_ecanet101_rla 41.5 61.6 44.4 retinanet_r101rlaeca_fpn_1x_coco_415 hdqx retinanet_r101rlaeca_fpn_1x_coco_415
Mask_R-CNN_resnet50_rla 39.5 60.1 43.3 mask_rcnn_r50rla_fpn_1x_coco_395 j1x6 mask_rcnn_r50rla_fpn_1x_coco_395
Mask_R-CNN_ecanet50_rla 40.6 61.8 44.0 mask_rcnn_r50rlaeca_fpn_1x_coco_406 c08r mask_rcnn_r50rlaeca_fpn_1x_coco_406
Mask_R-CNN_resnet101_rla 41.8 62.3 46.2 mask_rcnn_r101rla_fpn_1x_coco_418 8bsn mask_rcnn_r101rla_fpn_1x_coco_418
Mask_R-CNN_ecanet101_rla 42.9 63.6 46.9 mask_rcnn_r101rlaeca_fpn_1x_coco_429 3kmz mask_rcnn_r101rlaeca_fpn_1x_coco_429

Citation

@misc{zhao2021recurrence,
      title={Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation}, 
      author={Jingyu Zhao and Yanwen Fang and Guodong Li},
      year={2021},
      eprint={2110.11852},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Questions

Please contact '[email protected]' or '[email protected]'.

Owner
Joy Fang
Joy Fang
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023