Deep Networks with Recurrent Layer Aggregation

Related tags

Deep LearningRLANet
Overview

RLA-Net: Recurrent Layer Aggregation

Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation

This is an implementation of RLA-Net (accept by NeurIPS-2021, paper).

RLANet

Introduction

This paper introduces a concept of layer aggregation to describe how information from previous layers can be reused to better extract features at the current layer. While DenseNet is a typical example of the layer aggregation mechanism, its redundancy has been commonly criticized in the literature. This motivates us to propose a very light-weighted module, called recurrent layer aggregation (RLA), by making use of the sequential structure of layers in a deep CNN. Our RLA module is compatible with many mainstream deep CNNs, including ResNets, Xception and MobileNetV2, and its effectiveness is verified by our extensive experiments on image classification, object detection and instance segmentation tasks. Specifically, improvements can be uniformly observed on CIFAR, ImageNet and MS COCO datasets, and the corresponding RLA-Nets can surprisingly boost the performances by 2-3% on the object detection task. This evidences the power of our RLA module in helping main CNNs better learn structural information in images.

RLA module

RLA_module

Changelog

  • 2021/04/06 Upload RLA-ResNet model.
  • 2021/04/16 Upload RLA-MobileNetV2 (depthwise separable conv version) model.
  • 2021/09/29 Upload all the ablation study on ImageNet.
  • 2021/09/30 Upload mmdetection files.
  • 2021/10/01 Upload pretrained weights.

Installation

Requirements

Our environments

  • OS: Linux Red Hat 4.8.5
  • CUDA: 10.2
  • Toolkit: Python 3.8.5, PyTorch 1.7.0, torchvision 0.8.1
  • GPU: Tesla V100

Please refer to get_started.md for more details about installation.

Quick Start

Train with ResNet

- Use single node or multi node with multiple GPUs

Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either single node or multi node data parallel training.

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

- Specify single GPU or multiple GPUs

CUDA_VISIBLE_DEVICES={device_ids} python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

Testing

To evaluate the best model

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 --resume {path to the best model} -e {imagenet-folder with train and val folders}

Visualizing the training result

To generate acc_plot, loss_plot

python eval_visual.py --log-dir {log_folder}

Train with MobileNet_v2

It is same with above ResNet replace train.py by train_light.py.

Compute the parameters and FLOPs

If you have install thop, you can paras_flops.py to compute the parameters and FLOPs of our models. The usage is below:

python paras_flops.py -a {model_name}

More examples are shown in examples.md.

MMDetection

After installing MMDetection (see get_started.md), then do the following steps:

  • put the file resnet_rla.py in the folder './mmdetection/mmdet/models/backbones/', and do not forget to import the model in the init.py file.
  • put the config files (e.g. faster_rcnn_r50rla_fpn.py) in the folder './mmdetection/configs/base/models/'
  • put the config files (e.g. faster_rcnn_r50rla_fpn_1x_coco.py) in the folder './mmdetection/configs/faster_rcnn'

Note that the config files of the latest version of MMDetection are a little different, please modify the config files according to the latest format.

Experiments

ImageNet

Model Param. FLOPs Top-1 err.(%) Top-5 err.(%) BaiduDrive(models) Extract code GoogleDrive
RLA-ResNet50 24.67M 4.17G 22.83 6.58 resnet50_rla_2283 5lf1 resnet50_rla_2283
RLA-ECANet50 24.67M 4.18G 22.15 6.11 ecanet50_rla_2215 xrfo ecanet50_rla_2215
RLA-ResNet101 42.92M 7.79G 21.48 5.80 resnet101_rla_2148 zrv5 resnet101_rla_2148
RLA-ECANet101 42.92M 7.80G 21.00 5.51 ecanet101_rla_2100 vhpy ecanet101_rla_2100
RLA-MobileNetV2 3.46M 351.8M 27.62 9.18 dsrla_mobilenetv2_k32_2762 g1pm dsrla_mobilenetv2_k32_2762
RLA-ECA-MobileNetV2 3.46M 352.4M 27.07 8.89 dsrla_mobilenetv2_k32_eca_2707 9orl dsrla_mobilenetv2_k32_eca_2707

COCO 2017

Model AP AP_50 AP_75 BaiduDrive(models) Extract code GoogleDrive
Fast_R-CNN_resnet50_rla 38.8 59.6 42.0 faster_rcnn_r50rla_fpn_1x_coco_388 q5c8 faster_rcnn_r50rla_fpn_1x_coco_388
Fast_R-CNN_ecanet50_rla 39.8 61.2 43.2 faster_rcnn_r50rlaeca_fpn_1x_coco_398 f5xs faster_rcnn_r50rlaeca_fpn_1x_coco_398
Fast_R-CNN_resnet101_rla 41.2 61.8 44.9 faster_rcnn_r101rla_fpn_1x_coco_412 0ri3 faster_rcnn_r101rla_fpn_1x_coco_412
Fast_R-CNN_ecanet101_rla 42.1 63.3 46.1 faster_rcnn_r101rlaeca_fpn_1x_coco_421 cpug faster_rcnn_r101rlaeca_fpn_1x_coco_421
RetinaNet_resnet50_rla 37.9 57.0 40.8 retinanet_r50rla_fpn_1x_coco_379 lahj retinanet_r50rla_fpn_1x_coco_379
RetinaNet_ecanet50_rla 39.0 58.7 41.7 retinanet_r50rlaeca_fpn_1x_coco_390 adyd retinanet_r50rlaeca_fpn_1x_coco_390
RetinaNet_resnet101_rla 40.3 59.8 43.5 retinanet_r101rla_fpn_1x_coco_403 p8y0 retinanet_r101rla_fpn_1x_coco_403
RetinaNet_ecanet101_rla 41.5 61.6 44.4 retinanet_r101rlaeca_fpn_1x_coco_415 hdqx retinanet_r101rlaeca_fpn_1x_coco_415
Mask_R-CNN_resnet50_rla 39.5 60.1 43.3 mask_rcnn_r50rla_fpn_1x_coco_395 j1x6 mask_rcnn_r50rla_fpn_1x_coco_395
Mask_R-CNN_ecanet50_rla 40.6 61.8 44.0 mask_rcnn_r50rlaeca_fpn_1x_coco_406 c08r mask_rcnn_r50rlaeca_fpn_1x_coco_406
Mask_R-CNN_resnet101_rla 41.8 62.3 46.2 mask_rcnn_r101rla_fpn_1x_coco_418 8bsn mask_rcnn_r101rla_fpn_1x_coco_418
Mask_R-CNN_ecanet101_rla 42.9 63.6 46.9 mask_rcnn_r101rlaeca_fpn_1x_coco_429 3kmz mask_rcnn_r101rlaeca_fpn_1x_coco_429

Citation

@misc{zhao2021recurrence,
      title={Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation}, 
      author={Jingyu Zhao and Yanwen Fang and Guodong Li},
      year={2021},
      eprint={2110.11852},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Questions

Please contact '[email protected]' or '[email protected]'.

Owner
Joy Fang
Joy Fang
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022