FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

Overview

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection
arXiv preprint (arXiv:2111.10780).

This implement is modified from mmdetection. We also refer to the codes of ReDet, PIoU, and ProbIoU.

In the process of implementation, we find that only Python code processing will produce huge memory overhead on Nvidia devices. Therefore, we directly write the label assignment module proposed in this paper in the form of CUDA extension of Pytorch. The program could not work effectively when we migrate it to cuda 11 (only support cuda10). By applying CUDA expansion, the memory utilization is improved and a lot of unnecessary calculations are reduced. We also try to train FCOSR-M on 2080ti (4 images per device), which can basically fill memory of graphics card.

FCOSR TensorRT inference code is available at: https://github.com/lzh420202/TensorRT_Inference

We add a multiprocess version DOTA2COCO into DOTA_devkit package, you could switch USE_MULTI_PROCESS to control the function in prepare_dota.py

Install

Please refer to install.md for installation and dataset preparation.

Getting Started

Please see get_started.md for the basic usage.

Model Zoo

Speed vs Accuracy on DOTA 1.0 test set

benchmark

Details (Test device: nvidia RTX 2080ti)

Methods backbone FPS mAP(%)
ReDet ReR50 8.8 76.25
S2ANet Mobilenet v2 18.9 67.46
S2ANet R50 14.4 74.14
R3Det R50 9.2 71.9
Oriented-RCNN Mobilenet v2 21.2 72.72
Oriented-RCNN R50 13.8 75.87
Oriented-RCNN R101 11.3 76.28
RetinaNet-O Mobilenet v2 22.4 67.95
RetinaNet-O R50 16.5 72.7
RetinaNet-O R101 13.3 73.7
Faster-RCNN-O Mobilenet v2 23 67.41
Faster-RCNN-O R50 14.4 72.29
Faster-RCNN-O R101 11.4 72.65
FCOSR-S Mobilenet v2 23.7 74.05
FCOSR-M Rx50 14.6 77.15
FCOSR-L Rx101 7.9 77.39

The password of baiduPan is ABCD

FCOSR serise DOTA 1.0 result.FPS(2080ti) Detail

Model backbone MS Sched. Param. Input GFLOPs FPS mAP download
FCOSR-S Mobilenet v2 - 3x 7.32M 1024×1024 101.42 23.7 74.05 model/cfg
FCOSR-S Mobilenet v2 3x 7.32M 1024×1024 101.42 23.7 76.11 model/cfg
FCOSR-M ResNext50-32x4 - 3x 31.4M 1024×1024 210.01 14.6 77.15 model/cfg
FCOSR-M ResNext50-32x4 3x 31.4M 1024×1024 210.01 14.6 79.25 model/cfg
FCOSR-L ResNext101-64x4 - 3x 89.64M 1024×1024 445.75 7.9 77.39 model/cfg
FCOSR-L ResNext101-64x4 3x 89.64M 1024×1024 445.75 7.9 78.80 model/cfg

FCOSR serise DOTA 1.5 result. FPS(2080ti) Detail

Model backbone MS Sched. Param. Input GFLOPs FPS mAP download
FCOSR-S Mobilenet v2 - 3x 7.32M 1024×1024 101.42 23.7 66.37 model/cfg
FCOSR-S Mobilenet v2 3x 7.32M 1024×1024 101.42 23.7 73.14 model/cfg
FCOSR-M ResNext50-32x4 - 3x 31.4M 1024×1024 210.01 14.6 68.74 model/cfg
FCOSR-M ResNext50-32x4 3x 31.4M 1024×1024 210.01 14.6 73.79 model/cfg
FCOSR-L ResNext101-64x4 - 3x 89.64M 1024×1024 445.75 7.9 69.96 model/cfg
FCOSR-L ResNext101-64x4 3x 89.64M 1024×1024 445.75 7.9 75.41 model/cfg

FCOSR serise HRSC2016 result. FPS(2080ti)

Model backbone Rot. Sched. Param. Input GFLOPs FPS AP50(07) AP75(07) AP50(12) AP75(12) download
FCOSR-S Mobilenet v2 40k iters 7.29M 800×800 61.57 35.3 90.08 76.75 92.67 75.73 model/cfg
FCOSR-M ResNext50-32x4 40k iters 31.37M 800×800 127.87 26.9 90.15 78.58 94.84 81.38 model/cfg
FCOSR-L ResNext101-64x4 40k iters 89.61M 800×800 271.75 15.1 90.14 77.98 95.74 80.94 model/cfg

Lightweight FCOSR test result on Jetson Xavier NX (DOTA 1.0 single-scale). Detail

Model backbone Head channels Sched. Param Size Input GFLOPs FPS mAP onnx TensorRT
FCOSR-lite Mobilenet v2 256 3x 6.9M 51.63MB 1024×1024 101.25 7.64 74.30 onnx trt
FCOSR-tiny Mobilenet v2 128 3x 3.52M 23.2MB 1024×1024 35.89 10.68 73.93 onnx trt

Lightweight FCOSR test result on Jetson AGX Xavier (DOTA 1.0 single-scale).

A part of Dota1.0 dataset (whole image mode) Code

name size patch size gap patches det objects det time(s)
P0031.png 5343×3795 1024 200 35 1197 2.75
P0051.png 4672×5430 1024 200 42 309 2.38
P0112.png 6989×4516 1024 200 54 184 3.02
P0137.png 5276×4308 1024 200 35 66 1.95
P1004.png 7001×3907 1024 200 45 183 2.52
P1125.png 7582×4333 1024 200 54 28 2.95
P1129.png 4093×6529 1024 200 40 70 2.23
P1146.png 5231×4616 1024 200 42 64 2.29
P1157.png 7278×5286 1024 200 63 184 3.47
P1378.png 5445×4561 1024 200 42 83 2.32
P1379.png 4426×4182 1024 200 30 686 1.78
P1393.png 6072×6540 1024 200 64 893 3.63
P1400.png 6471×4479 1024 200 48 348 2.63
P1402.png 4112×4793 1024 200 30 293 1.68
P1406.png 6531×4182 1024 200 40 19 2.19
P1415.png 4894x4898 1024 200 36 190 1.99
P1436.png 5136×5156 1024 200 42 39 2.31
P1448.png 7242×5678 1024 200 63 51 3.41
P1457.png 5193×4658 1024 200 42 382 2.33
P1461.png 6661×6308 1024 200 64 27 3.45
P1494.png 4782×6677 1024 200 48 70 2.61
P1500.png 4769×4386 1024 200 36 92 1.96
P1772.png 5963×5553 1024 200 49 28 2.70
P1774.png 5352×4281 1024 200 35 291 1.95
P1796.png 5870×5822 1024 200 49 308 2.74
P1870.png 5942×6059 1024 200 56 135 3.04
P2043.png 4165×3438 1024 200 20 1479 1.49
P2329.png 7950×4334 1024 200 60 83 3.26
P2641.png 7574×5625 1024 200 63 269 3.41
P2642.png 7039×5551 1024 200 63 451 3.50
P2643.png 7568×5619 1024 200 63 249 3.40
P2645.png 4605×3442 1024 200 24 357 1.42
P2762.png 8074×4359 1024 200 60 127 3.23
P2795.png 4495×3981 1024 200 30 65 1.64
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022