a simple proof system I made to learn math without any mistakes

Overview

math_up

a simple proof system I made to learn math without any mistakes




0. Short Introduction


test yourself, enjoy your math!

math_up is an NBG-based, very simple but programmable proof verifier written in Python.
Some notable features are:

  • super-simplicity, short learning time
  • programmability
  • fully written in Python (including all the proofs!)
  • trade-off between runtime efficiency & reductionism
  • non-generic implementation (supports only 1st-order logic, NBG set theory)
  • supports on Fitch-style proofs, "let" variables and many other intuitive APIs
  • rule-based, without any AI-like things

The following sections assumes you already know basic concepts on logic and set theory.

Author : Hyunwoo Yang
  • Department of Mathematical Sciences, Seoul National University (2013 ~ 2019)
  • Modem R&D Group, Samsung Networks (2019 ~ )

1. Sentence Generation


1-1. Variables

You may use alphabets from a to z, and also from A to Z.
Just calling clear() assures all the variables are new:

clear() # clear all alphabets

1-2. Atomic Properties

YourPropertyName = make_property("its_formal_name") # required at the first time
YourPropertyName(a, b) # usage

If the property is a binary relation, you can use operator overloading.
For example:

a 

1-3. Logical Connections

~ P         # not P
P & Q       # P and Q
P | Q       # P or Q
P >> Q      # P imply Q
P == Q      # P iff Q
true        # true
false       # false

1-4. Quantifiers

All(x, y, P(x, y)) # for all x and y, P(x, y)
Exist(x, y, z, P(x, y, z)) # there exists x, y and z such that P(x, y, z)
UniquelyExist(a, P(a, t)) # a is the only one such that P(a, t) 

1-5. Functions

YourFunctionName = make_function("its_formal_name") # required at the first time
YourFunctionName(x, y, z) # usage

If the function is a binary operator, you can use operator overloading.
For example:

x 

2. Numbering or Naming Statements

(your_sentence) @ 193
(your_sentence) @ "my_theorem"

Each number allows reuses, but the string names must be unique.
Hence, please number the sentences during the proof, but name the theorem at the last.

3. Inferences

(your_sentence) @ (save_as, INFERENCE_TO_USE, *arguments, *reasons)

save_as is a number or string you'd like to save your_sentence as.
INFERENCE_TO_USE depends on the inference you want to use to deduce your_sentence.
Some arguments are required or not, depending on the INFERENCE_TO_USE
reasons are the numbers or strings corresponding to the sentences already proved, which are now being used to deduce your_sentence.

3-1. DEDUCE

with (your_assumption) @ 27 :
    # your proof ...
    (your_conclusion) @ (39, SOME_INFERENCE, argument0, argument1, reason0, reason1)
(your_assumption >> your_conclusion) @ (40, DEDUCE)

math_up supports Fitch-style proofs.
That means, you may make an assumption P, prove Q and then deduce (P implies Q).
The inference to use is DEDUCE. DEDUCE doesn't require any arguments or reasons, but it must follow right after the end of the previous with block.

3-2. TAUTOLOGY

(A >> B) @ (152, INFERENCE0, argument0, reason0, reason1)
A @ (153, INFERENCE1, argument1, argument2, reason2)
B @ (154, TAUTOLOGY, 152, 153)

When is statement is a logical conclusion of previously proved sentences, and it can be checked by simply drawing the truth table, use TAUTOLOGY.
It doesn't require any arguments.
Put the sentences needed to draw the truth table as reasons.

3-2. DEFINE_PROPERTY

(NewProperty(x, y) == definition) @ ("save_as", DEFINE_PROPERTY, "formal_name_of_the_property")

You can freely define new properties with DEFINE_PROPERTY.
It does not requires any reasoning, but requires the formal name of the new property as the only argument.

3-3. DEFINE_FUNCTION

All(x, y, some_condition(x, y) >> UniquelyExist(z, P(x, y, z))) @ (70, INFERENCE0)
All(x, y, some_condition(x, y) >> P(x, y, NewFunction(z))) @ ("save_as", DEFINE_FUNCTION, 70)

Defining new function requires a sentence with a uniquely-exist quantifier.
Using DEFINE_FUNCTION, you can convert (for all x and y, if P(x, y) there is only one z such that Q(x, y, z)) into (for all x and y, if P(x, y) then Q(x, y, f(x, y)))
It requires no arguments, but one uniquely-exist setence as the only reason.


3-4. DUAL

(~All(x, P(x)) == Exist(x, ~P(x))) @ (32, DUAL)
((~Exist(y, Q(z, y))) == All(y, ~Q(z, y))) @ (33, DUAL)

not all == exist not, while not exist == all not.
To use these equivalences, use DUAL.
It requires no arguments or reasons.

3-5. FOUND

P(f(c)) @ (5, INFERENCE0, argument0)
Exist(x, P(x)) @ (6, FOUND, f(c), 5)

If you found a term satisfying the desired property, you can deduce the existence by FOUND.
It requires the term you actually found as an argument, and a sentence showing the desired property as the only reason.

3-6. LET

Exist(x, P(x)) @ (6, INFERENCE0, argument0, 5)
P(c) @ (7, LET, c, 6)

This one is the inverse of FOUND- i.e. it gives a real example from the existence.
It requires a fresh variable(i.e. never been used after the last clean()) to use as an existential bound variable as an argument.
Also, of course, an existential statement is required as the only reason.

3-7. PUT

All(x, P(x, z)) @ (13, INFERENCE0, 7, 9)
P(f(u), z) @ (14, PUT, f(u), 13)

PUT is used to deduce a specific example from the universally quantifiered sentence.
The term you want to put is an argument, and of course, the universally quantifiered sentence is the only reason.

3-8. REPLACE

P(x, a, a)
(a == f(c)) @ (8, INFERENCE0, argument0, 7)
P(x, a, f(c)) @ (9, REPLACE, 8)

When the two terms s and t are shown to be equal to each other, and the sentence Q is obtained from a previously proved P by interchainging s and t several times, REPLACE deduces Q from the two reasoning, i.e. s == t and P.
No arguments are needed.

3-9. AXIOM

any_sentence @ ("save_as", AXIOM)

AXIOM requires no inputs, but simply makes a sentence to be proved.

3-10. BY_UNIQUE

UniquelyExist(x, P(x)) @ (0, INFERENCE0)
P(a) @ (1, INFERENCE1, argument0)
P(f(b)) @ (2, INFERENCE2, argument1)
(a == f(b)) @ (3, BY_UNIQUE, 0, 1, 2)

BY_UNIQUE requires no arguments, but requires three reasons.
The first one is about unique existence, and the last two are specifications.
You can conclude two terms used for specifications respectively are equal to each other.
3-10. CLAIM_UNIQUE

Exist(x, P(x)) @ (6, INFERENCE0, argument0, 5)
P(c) @ (7, LET, c, 6)
P(d) @ (8, LET, d, 6)
# your proof ...
(c == d) @ (13, INFERENCE0, 12)
UniquelyExist(x, P(x)) @ (14, CLAIM_UNIQUE, 13)

CLAIM_UNIQUE upgrades an existence statement to a unique-existence statement.
Before you use it, you have to apply LET two times, and show the result variables are the same.
No arguments are required, but the equality is consumed as the only reason.

3-11. DEFINE_CLASS

UniquelyExist(C, All(x, (x in C) == UniquelyExist(a, UniquelyExist(b, (x == Tuple(a,b)) and Set(a) & Set(b) & P(a, b))))) @ (17, DEFINE_CLASS, C, x, [a, b], P(a, b))

This implements the class existence theorem of the NBG set theory.
No reasoning is required, but there are four arguments:
C : a fresh variable, to be a newly defined class
x : a fresh variable, to indicate the elements of C
[a, b, ...] : list of the components of x
P(a, b) : a condition satisfied by the components


4. Remarks


4-1. Trade-Off : Runtime Efficiency vs. Reductionism

The class existence theorem is actually not an axiom, but is PROVABLE, due to Goedel
However, proving it requires recursively break down all the higher-level definitions to the primitive ones
I'm afraid our computers would not have enough resourse to do such tedious computation...
Similarly, meta-theorems such as deduction theorem, RULE-C, function definition are NOT reduced by this program.


4-2. Trade-Off : Readability vs. Completeness

Actually, we need one more axiom: All(x, P and Q(x)) >> (P and All(x, Q(x)))
But I'll not implement this here... it may not, and should not be needed for readable proofs.
For the similar reasons, the program doesn't allow weird sentences like All(x, All(x, P(x))) or All(x, P(y)).
Strictly speaking, math_up is an incomplete system to restrict the proofs more readable.


4-3. Acknowledgement

Thanks to everyone taught me math & CS.
Mendelson's excellent book, Introduction to Mathematical Logic was extremely helpful.
Jech's Set Theory was hard to read but great.

Owner
양현우
양현우
Osu statistics right on your desktop, made with pyqt

Osu!Stat Osu statistics right on your desktop, made with Qt5 Credits Would like to thank these creators for their projects and contributions. ppy, osu

Aditya Gupta 21 Jul 13, 2022
HatAsm - a HatSploit native powerful assembler and disassembler that provides support for all common architectures

HatAsm - a HatSploit native powerful assembler and disassembler that provides support for all common architectures.

EntySec 8 Nov 09, 2022
Stopmagic gives you the power of creating amazing Stop Motion animations faster and easier than ever before.

Stopmagic gives you the power of creating amazing Stop Motion animations faster and easier than ever before. This project is maintained by Aldrin Mathew.

Aldrin's Art Factory 67 Dec 31, 2022
Superset custom path for python

It is a common requirement to have superset running under a base url, (https://mydomain.at/analytics/ instead of https://mydomain.at/). I created the

9 Dec 14, 2022
Gerador de dafaces

🎴 DefaceGenerator Obs: esse script foi criado com a intenção de ajudar pessoas iniciantes no hacking que ainda não conseguem criar suas próprias defa

LordShinigami 3 Jan 09, 2022
Small scripts to learn about GNOME internals

gnome-hacks This is a collection of APIs that allow programmatic manipulation of the GNOME shell. If you use GNOME (the default graphical shell in Ubu

Alex Nichol 5 Oct 22, 2021
This tool helps you to reverse any regex and gives you the opposite/allowed Letters,numerics and symbols.

Regex-Reverser This tool helps you to reverse any regex and gives you the opposite/allowed Letters,numerics and symbols. Screenshots Usage/Examples py

x19 0 Jun 02, 2022
Allow you to create you own custom decentralize job management system.

ants Allow you to create you own custom decentralize job management system. Install $ git clone https://github.com/hvuhsg/ants.git Run monitor exampl

1 Feb 15, 2022
Implemented Exploratory Data Analysis (EDA) using Python.Built a dashboard in Tableau and found that 45.87% of People suffer from heart disease.

Heart_Disease_Diagnostic_Analysis Objective 🎯 The aim of this project is to use the given data and perform ETL and data analysis to infer key metrics

Sultan Shaikh 4 Jan 28, 2022
Never miss a deadline again

Hack the Opportunities Never miss a deadline again! Link to the excel sheet Contribution This list is not complete and I alone cannot make it whole. T

Vibali Joshi 391 Dec 28, 2022
Strong Typing in Python with Decorators

typy Strong Typing in Python with Decorators Description This light-weight library provides decorators that can be used to implement strongly-typed be

Ekin 0 Feb 06, 2022
Hands-on machine learning workshop

emb-ntua-workshop This workshop discusses introductory concepts of machine learning and data mining following a hands-on approach using popular tools

ISSEL Soft Eng Team 12 Oct 30, 2022
Small projects for python beginners.

Python Mini Projects For Beginners I recently started doing the #100DaysOfCode Challenge in Python. I've used Python before, but I had switched to JS

Sreekesh Iyer 10 Dec 12, 2022
ColabFold / AlphaFold2_advanced on your local PC (or macOS)

LocalColabFold ColabFold / AlphaFold2_advanced on your local PC (or macOS) Installation For Linux Make sure curl and wget commands are already install

Yoshitaka Moriwaki 207 Dec 22, 2022
Rock-paper-scissors basic game in terminal with Python

piedra-papel-tijera Juego básico de piedra, papel o tijera en terminal con Python. El juego incluye: Nombre de jugador Número de veces a jugar Resulta

Isaías Flores 1 Dec 14, 2021
Trusted sessions for falcon using itsdangerous.

Falcon signed sessions This project allows you to easily add trusted cookies to falcon, it works by storing a signed cookie in the client's browser us

Ward 1 Feb 08, 2022
py-js: python3 objects for max

Simple (and extensible) python3 externals for MaxMSP

Shakeeb Alireza 39 Nov 20, 2022
ESteg - A simple steganography program for python

ESteg A simple steganography program to embed the contents of a text file into a

Jithin Renji 1 Jan 02, 2022
redun aims to be a more expressive and efficient workflow framework

redun yet another redundant workflow engine redun aims to be a more expressive and efficient workflow framework, built on top of the popular Python pr

insitro 372 Jan 04, 2023
Android Blobs Organizer

Android Blobs Organizer

Sebastiano Barezzi 96 Jan 02, 2023