Simple SDF mesh generation in Python

Overview

sdf

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Special thanks to Inigo Quilez for his excellent documentation on signed distance functions:

Example

Here is a complete example that generates the model shown. This is the canonical Constructive Solid Geometry example. Note the use of operators for union, intersection, and difference.

from sdf import *

f = sphere(1) & box(1.5)

c = cylinder(0.5)
f -= c.orient(X) | c.orient(Y) | c.orient(Z)

f.save('out.stl')

Yes, that's really the entire code! You can 3D print that model or use it in a 3D application.

More Examples

Have a cool example? Submit a PR!

gearlike.py knurling.py blobby.py weave.py
gearlike knurling blobby weave
gearlike knurling blobby weave

Requirements

Note that the dependencies will be automatically installed by setup.py when following the directions below.

  • Python 3
  • numpy
  • Pillow
  • scikit-image
  • scipy

Installation

Use the commands below to clone the repository and install the sdf library in a Python virtualenv.

git clone https://github.com/fogleman/sdf.git
cd sdf
virtualenv env
. env/bin/activate
pip install -e .

Confirm that it works:

python examples/example.py # should generate a file named out.stl

You can skip the installation if you always run scripts that import sdf from the root folder.

Viewing the Mesh

Find and install a 3D mesh viewer for your platform, such as MeshLab.

I have developed and use my own cross-platform mesh viewer called meshview (see screenshot). Installation is easy if you have Go and glfw installed:

$ brew install go glfw # on macOS with homebrew
$ go get -u github.com/fogleman/meshview/cmd/meshview

Then you can view any mesh from the command line with:

$ meshview your-mesh.stl

See the meshview README for more complete installation instructions.

On macOS you can just use the built-in Quick Look (press spacebar after selecting the STL file in Finder) in a pinch.

API

In all of the below examples, f is any 3D SDF, such as:

f = sphere()

Bounds

The bounding box of the SDF is automatically estimated. Inexact SDFs such as non-uniform scaling may cause issues with this process. In that case you can specify the bounds to sample manually:

f.save('out.stl', bounds=((-1, -1, -1), (1, 1, 1)))

Resolution

The resolution of the mesh is also computed automatically. There are two ways to specify the resolution. You can set the resolution directly with step:

f.save('out.stl', step=0.01)
f.save('out.stl', step=(0.01, 0.02, 0.03)) # non-uniform resolution

Or you can specify approximately how many points to sample:

f.save('out.stl', samples=2**24) # sample about 16M points

By default, samples=2**22 is used.

Tip: Use the default resolution while developing your SDF. Then when you're done, crank up the resolution for your final output.

Batches

The SDF is sampled in batches. By default the batches have 32**3 = 32768 points each. This batch size can be overridden:

f.save('out.stl', batch_size=64) # instead of 32

The code attempts to skip any batches that are far away from the surface of the mesh. Inexact SDFs such as non-uniform scaling may cause issues with this process, resulting in holes in the output mesh (where batches were skipped when they shouldn't have been). To avoid this, you can disable sparse sampling:

f.save('out.stl', sparse=False) # force all batches to be completely sampled

Worker Threads

The SDF is sampled in batches using worker threads. By default, multiprocessing.cpu_count() worker threads are used. This can be overridden:

f.save('out.stl', workers=1) # only use one worker thread

Without Saving

You can of course generate a mesh without writing it to an STL file:

points = f.generate() # takes the same optional arguments as `save`
print(len(points)) # print number of points (3x the number of triangles)
print(points[:3]) # print the vertices of the first triangle

If you want to save an STL after generate, just use:

write_binary_stl(path, points)

Visualizing the SDF

You can plot a visualization of a 2D slice of the SDF using matplotlib. This can be useful for debugging purposes.

f.show_slice(z=0)
f.show_slice(z=0, abs=True) # show abs(f)

You can specify a slice plane at any X, Y, or Z coordinate. You can also specify the bounds to plot.

Note that matplotlib is only imported if this function is called, so it isn't strictly required as a dependency.


How it Works

The code simply uses the Marching Cubes algorithm to generate a mesh from the Signed Distance Function.

This would normally be abysmally slow in Python. However, numpy is used to evaluate the SDF on entire batches of points simultaneously. Furthermore, multiple threads are used to process batches in parallel. The result is surprisingly fast (for marching cubes). Meshes of adequate detail can still be quite large in terms of number of triangles.

The core "engine" of the sdf library is very small and can be found in mesh.py.

In short, there is nothing algorithmically revolutionary here. The goal is to provide a simple, fun, and easy-to-use API for generating 3D models in our favorite language Python.

Files

  • sdf/d2.py: 2D signed distance functions
  • sdf/d3.py: 3D signed distance functions
  • sdf/dn.py: Dimension-agnostic signed distance functions
  • sdf/ease.py: Easing functions that operate on numpy arrays. Some SDFs take an easing function as a parameter.
  • sdf/mesh.py: The core mesh-generation engine. Also includes code for estimating the bounding box of an SDF and for plotting a 2D slice of an SDF with matplotlib.
  • sdf/progress.py: A console progress bar.
  • sdf/stl.py: Code for writing a binary STL file.
  • sdf/text.py: Generate 2D SDFs for text (which can then be extruded)
  • sdf/util.py: Utility constants and functions.

SDF Implementation

It is reasonable to write your own SDFs beyond those provided by the built-in library. Browse the SDF implementations to understand how they are implemented. Here are some simple examples:

@sdf3
def sphere(radius=1, center=ORIGIN):
    def f(p):
        return np.linalg.norm(p - center, axis=1) - radius
    return f

An SDF is simply a function that takes a numpy array of points with shape (N, 3) for 3D SDFs or shape (N, 2) for 2D SDFs and returns the signed distance for each of those points as an array of shape (N, 1). They are wrapped with the @sdf3 decorator (or @sdf2 for 2D SDFs) which make boolean operators work, add the save method, add the operators like translate, etc.

@op3
def translate(other, offset):
    def f(p):
        return other(p - offset)
    return f

An SDF that operates on another SDF (like the above translate) should use the @op3 decorator instead. This will register the function such that SDFs can be chained together like:

f = sphere(1).translate((1, 2, 3))

Instead of what would otherwise be required:

f = translate(sphere(1), (1, 2, 3))

Remember, it's Python!

Remember, this is Python, so it's fully programmable. You can and should split up your model into parameterized sub-components, for example. You can use for loops and conditionals wherever applicable. The sky is the limit!

See the customizable box example for some starting ideas.


Function Reference

3D Primitives

sphere

sphere(radius=1, center=ORIGIN)

f = sphere() # unit sphere
f = sphere(2) # specify radius
f = sphere(1, (1, 2, 3)) # translated sphere

box

box(size=1, center=ORIGIN, a=None, b=None)

f = box(1) # all side lengths = 1
f = box((1, 2, 3)) # different side lengths
f = box(a=(-1, -1, -1), b=(3, 4, 5)) # specified by bounds

rounded_box

rounded_box(size, radius)

f = rounded_box((1, 2, 3), 0.25)

wireframe_box

wireframe_box(size, thickness)

f = wireframe_box((1, 2, 3), 0.05)

torus

torus(r1, r2)

f = torus(1, 0.25)

capsule

capsule(a, b, radius)

f = capsule(-Z, Z, 0.5)

capped_cylinder

capped_cylinder(a, b, radius)

f = capped_cylinder(-Z, Z, 0.5)

rounded_cylinder

rounded_cylinder(ra, rb, h)

f = rounded_cylinder(0.5, 0.1, 2)

capped_cone

capped_cone(a, b, ra, rb)

f = capped_cone(-Z, Z, 1, 0.5)

rounded_cone

rounded_cone(r1, r2, h)

f = rounded_cone(0.75, 0.25, 2)

ellipsoid

ellipsoid(size)

f = ellipsoid((1, 2, 3))

pyramid

pyramid(h)

f = pyramid(1)

Platonic Solids

tetrahedron

tetrahedron(r)

f = tetrahedron(1)

octahedron

octahedron(r)

f = octahedron(1)

dodecahedron

dodecahedron(r)

f = dodecahedron(1)

icosahedron

icosahedron(r)

f = icosahedron(1)

Infinite 3D Primitives

The following SDFs extend to infinity in some or all axes. They can only effectively be used in combination with other shapes, as shown in the examples below.

plane

plane(normal=UP, point=ORIGIN)

plane is an infinite plane, with one side being positive (outside) and one side being negative (inside).

f = sphere() & plane()

slab

slab(x0=None, y0=None, z0=None, x1=None, y1=None, z1=None, k=None)

slab is useful for cutting a shape on one or more axis-aligned planes.

f = sphere() & slab(z0=-0.5, z1=0.5, x0=0)

cylinder

cylinder(radius)

cylinder is an infinite cylinder along the Z axis.

f = sphere() - cylinder(0.5)

Text

Yes, even text is supported!

Text

text(name, text, width=None, height=None, texture_point_size=512)

FONT = 'Arial'
TEXT = 'Hello, world!'

w, h = measure_text(FONT, TEXT)

f = rounded_box((w + 1, h + 1, 0.2), 0.1)
f -= text(FONT, TEXT).extrude(1)

Positioning

translate

translate(other, offset)

f = sphere().translate((0, 0, 2))

scale

scale(other, factor)

Note that non-uniform scaling is an inexact SDF.

f = sphere().scale(2)
f = sphere().scale((1, 2, 3)) # non-uniform scaling

rotate

rotate(other, angle, vector=Z)

f = capped_cylinder(-Z, Z, 0.5).rotate(pi / 4, X)

orient

orient(other, axis)

orient rotates the shape such that whatever was pointing in the +Z direction is now pointing in the specified direction.

c = capped_cylinder(-Z, Z, 0.25)
f = c.orient(X) | c.orient(Y) | c.orient(Z)

Boolean Operations

The following primitives a and b are used in all of the following boolean operations.

a = box((3, 3, 0.5))
b = sphere()

The named versions (union, difference, intersection) can all take one or more SDFs as input. They all take an optional k parameter to define the amount of smoothing to apply. When using operators (|, -, &) the smoothing can still be applied via the .k(...) function.

union

f = a | b
f = union(a, b) # equivalent

difference

f = a - b
f = difference(a, b) # equivalent

intersection

f = a & b
f = intersection(a, b) # equivalent

smooth_union

f = a | b.k(0.25)
f = union(a, b, k=0.25) # equivalent

smooth_difference

f = a - b.k(0.25)
f = difference(a, b, k=0.25) # equivalent

smooth_intersection

f = a & b.k(0.25)
f = intersection(a, b, k=0.25) # equivalent

Repetition

repeat

repeat(other, spacing, count=None, padding=0)

repeat can repeat the underlying SDF infinitely or a finite number of times. If finite, the number of repetitions must be odd, because the count specifies the number of copies to make on each side of the origin. If the repeated elements overlap or come close together, you made need to specify a padding greater than zero to compute a correct SDF.

f = sphere().repeat(3, (1, 1, 0))

circular_array

circular_array(other, count, offset)

circular_array makes count copies of the underlying SDF, arranged in a circle around the Z axis. offset specifies how far to translate the shape in X before arraying it. The underlying SDF is only evaluated twice (instead of count times), so this is more performant than instantiating count copies of a shape.

f = capped_cylinder(-Z, Z, 0.5).circular_array(8, 4)

Miscellaneous

blend

blend(a, *bs, k=0.5)

f = sphere().blend(box())

dilate

dilate(other, r)

f = example.dilate(0.1)

erode

erode(other, r)

f = example.erode(0.1)

shell

shell(other, thickness)

f = sphere().shell(0.05) & plane(-Z)

elongate

elongate(other, size)

f = example.elongate((0.25, 0.5, 0.75))

twist

twist(other, k)

f = box().twist(pi / 2)

bend

bend(other, k)

f = box().bend(1)

bend_linear

bend_linear(other, p0, p1, v, e=ease.linear)

f = capsule(-Z * 2, Z * 2, 0.25).bend_linear(-Z, Z, X, ease.in_out_quad)

bend_radial

bend_radial(other, r0, r1, dz, e=ease.linear)

f = box((5, 5, 0.25)).bend_radial(1, 2, -1, ease.in_out_quad)

transition_linear

transition_linear(f0, f1, p0=-Z, p1=Z, e=ease.linear)

f = box().transition_linear(sphere(), e=ease.in_out_quad)

transition_radial

transition_radial(f0, f1, r0=0, r1=1, e=ease.linear)

f = box().transition_radial(sphere(), e=ease.in_out_quad)

wrap_around

wrap_around(other, x0, x1, r=None, e=ease.linear)

FONT = 'Arial'
TEXT = ' wrap_around ' * 3
w, h = measure_text(FONT, TEXT)
f = text(FONT, TEXT).extrude(0.1).orient(Y).wrap_around(-w / 2, w / 2)

2D to 3D Operations

extrude

extrude(other, h)

f = hexagon(1).extrude(1)

extrude_to

extrude_to(a, b, h, e=ease.linear)

f = rectangle(2).extrude_to(circle(1), 2, ease.in_out_quad)

revolve

revolve(other, offset=0)

f = hexagon(1).revolve(3)

3D to 2D Operations

slice

slice(other)

f = example.translate((0, 0, 0.55)).slice().extrude(0.1)

2D Primitives

circle

line

rectangle

rounded_rectangle

equilateral_triangle

hexagon

rounded_x

polygon

Owner
Michael Fogleman
Software Engineer at Formlabs
Michael Fogleman
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
Program created with opencv that allows you to automatically count your repetitions on several fitness exercises.

Virtual partner of gym Description Program created with opencv that allows you to automatically count your repetitions on several fitness exercises li

1 Jan 04, 2022
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
Image processing is one of the most common term in computer vision

Image processing is one of the most common term in computer vision. Computer vision is the process by which computers can understand images and videos, and how they are stored, manipulated, and retri

Happy N. Monday 3 Feb 15, 2022
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Rest API Written In Python To Classify NSFW Images.

✨ NSFW Classifier API ✨ Rest API Written In Python To Classify NSFW Images. Fastest Solution If you don't want to selfhost it, there's already an inst

Akshay Rajput 23 Dec 30, 2022
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.

Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr

Eric Ihli 311 Dec 24, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
Color Picker and Color Detection tool for METR4202

METR4202 Color Detection Help This is sample code that can be used for the METR4202 project demo. There are two files provided, both running on Python

Miguel Valencia 1 Oct 23, 2021
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
Python library to extract tabular data from images and scanned PDFs

Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d

Org. Account 165 Dec 31, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022