PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

Related tags

Deep LearningIBRNet
Overview

IBRNet: Learning Multi-View Image-Based Rendering

PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser
CVPR 2021

project page | paper | data & model

Demo

Installation

Clone this repo with submodules:

git clone --recurse-submodules https://github.com/googleinterns/IBRNet
cd IBRNet/

The code is tested with Python3.7, PyTorch == 1.5 and CUDA == 10.2. We recommend you to use anaconda to make sure that all dependencies are in place. To create an anaconda environment:

conda env create -f environment.yml
conda activate ibrnet

Datasets

1. Training datasets

├──data/
    ├──ibrnet_collected_1/
    ├──ibrnet_collected_2/
    ├──real_iconic_noface/
    ├──spaces_dataset/
    ├──RealEstate10K-subset/
    ├──google_scanned_objects/

Please first cd data/, and then download datasets into data/ following the instructions below. The organization of the datasets should be the same as above.

(a) Our captures

We captured 67 forward-facing scenes (each scene contains 20-60 images). To download our data ibrnet_collected.zip (4.1G) for training, run:

gdown https://drive.google.com/uc?id=1rkzl3ecL3H0Xxf5WTyc2Swv30RIyr1R_
unzip ibrnet_collected.zip

P.S. We've captured some more scenes in ibrnet_collected_more.zip, but we didn't include them for training. Feel free to download them if you would like more scenes for your task, but you wouldn't need them to reproduce our results.

(b) LLFF released scenes

Download and process real_iconic_noface.zip (6.6G) using the following commands:

# download 
gdown https://drive.google.com/uc?id=1ThgjloNt58ZdnEuiCeRf9tATJ-HI0b01
unzip real_iconic_noface.zip

# [IMPORTANT] remove scenes that appear in the test set
cd real_iconic_noface/
rm -rf data2_fernvlsb data2_hugetrike data2_trexsanta data3_orchid data5_leafscene data5_lotr data5_redflower
cd ../

(c) Spaces Dataset

Download spaces dataset by:

git clone https://github.com/augmentedperception/spaces_dataset

(d) RealEstate10K

The full RealEstate10K dataset is very large and can be difficult to download. Hence, we provide a subset of RealEstate10K training scenes containing only 200 scenes. In our experiment, we found using more scenes from RealEstate10K only provides marginal improvement. To download our camera files (2MB):

gdown https://drive.google.com/uc?id=1IgJIeCPPZ8UZ529rN8dw9ihNi1E9K0hL
unzip RealEstate10K_train_cameras_200.zip -d RealEstate10K-subset

Besides the camera files, you also need to download the corresponding video frames from YouTube. You can download the frames (29G) by running the following commands. The script uses ffmpeg to extract frames, so please make sure you have ffmpeg installed.

git clone https://github.com/qianqianwang68/RealEstate10K_Downloader
cd RealEstate10K_Downloader
python generate_dataset.py train
cd ../

(e) Google Scanned Objects

Google Scanned Objects contain 1032 diffuse objects with various shapes and appearances. We use gaps to render these objects for training. Each object is rendered at 512 × 512 pixels from viewpoints on a quarter of the sphere. We render 250 views for each object. To download our renderings (7.5GB), run:

gdown https://drive.google.com/uc?id=1w1Cs0yztH6kE3JIz7mdggvPGCwIKkVi2
unzip google_scanned_objects_renderings.zip

2. Evaluation datasets

├──data/
    ├──deepvoxels/
    ├──nerf_synthetic/
    ├──nerf_llff_data/

The evaluation datasets include DeepVoxel synthetic dataset, NeRF realistic 360 dataset and the real forward-facing dataset. To download all three datasets (6.7G), run the following command under data/ directory:

bash download_eval_data.sh

Evaluation

First download our pretrained model under the project root directory:

gdown https://drive.google.com/uc?id=165Et85R8YnL-5NcehG0fzqsnAUN8uxUJ
unzip pretrained_model.zip

You can use eval/eval.py to evaluate the pretrained model. For example, to obtain the PSNR, SSIM and LPIPS on the fern scene in the real forward-facing dataset, you can first specify your paths in configs/eval_llff.txt and then run:

cd eval/
python eval.py --config ../configs/eval_llff.txt

Rendering videos of smooth camera paths

You can use render_llff_video.py to render videos of smooth camera paths for the real forward-facing scenes. For example, you can first specify your paths in configs/eval_llff.txt and then run:

cd eval/
python render_llff_video.py --config ../configs/eval_llff.txt

You can also capture your own data of forward-facing scenes and synthesize novel views using our method. Please follow the instructions from LLFF on how to capture and process the images.

Training

We strongly recommend you to train the model with multiple GPUs:

# this example uses 8 GPUs (nproc_per_node=8) 
python -m torch.distributed.launch --nproc_per_node=8 train.py --config configs/pretrain.txt

Alternatively, you can train with a single GPU by setting distributed=False in configs/pretrain.txt and running:

python train.py --config configs/pretrain.txt

Finetuning

To finetune on a specific scene, for example, fern, using the pretrained model, run:

# this example uses 2 GPUs (nproc_per_node=2) 
python -m torch.distributed.launch --nproc_per_node=2 train.py --config configs/finetune_llff.txt

Additional information

  • Our current implementation is not well-optimized in terms of the time efficiency at inference. Rendering a 1000x800 image can take from 30s to over a minute depending on specific GPU models. Please make sure to maximize the GPU memory utilization by increasing the size of the chunk to reduce inference time. You can also try to decrease the number of input source views (but subject to performance loss).
  • If you want to create and train on your own datasets, you can implement your own Dataset class following our examples in ibrnet/data_loaders/. You can verify the camera poses using data_verifier.py in ibrnet/data_loaders/.
  • Since the evaluation datasets are either object-centric or forward-facing scenes, our provided view selection methods are very simple (based on either viewpoints or camera locations). If you want to evaluate our method on new scenes with other kinds of camera distributions, you might need to implement your own view selection methods to identify the most effective source views.
  • If you have any questions, you can contact [email protected].

Citation

@inproceedings{wang2021ibrnet,
  author    = {Wang, Qianqian and Wang, Zhicheng and Genova, Kyle and Srinivasan, Pratul and Zhou, Howard  and Barron, Jonathan T. and Martin-Brualla, Ricardo and Snavely, Noah and Funkhouser, Thomas},
  title     = {IBRNet: Learning Multi-View Image-Based Rendering},
  booktitle = {CVPR},
  year      = {2021}
}

Owner
Google Interns
Google Interns
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023