GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Overview

Course title page

Course Description

The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine performance with simplicity and interactivity, enabling unprecedented productivity in HPC development. This course will discuss both basic and advanced topics relevant for single and Multi-GPU computing with Julia. It will focus on the CUDA.jl package, which enables writing native Julia code for GPUs. Topics covered include the following:

  • GPU array programming;
  • GPU kernel programming;
  • kernel launch parameters;
  • usage of on-chip memory;
  • Multi-GPU computing;
  • code reflection and introspection; and
  • diverse advanced optimization techniques.

This course combines lectures and hands-on sessions.

Target audience

This course addresses scientists interested in doing HPC using Julia. Previous Julia or GPU computing knowledge is not needed, but a good general understanding of programming is advantageous.

Instructors

  • Dr. Tim Besard (Lead developer of CUDA.jl, Julia Computing Inc.)
  • Dr. Samuel Omlin (Computational Scientist | Responsible for Julia computing, CSCS)

Course material

This git repository contains the material of day 1 and 2 (speaker: Dr. Samuel Omlin, CSCS). The material of day 3 and 4 is found in this git repository (speaker: Dr. Tim Besard, Julia Computing Inc.).

Course recording

The edited course recording is found here. The following list provides key entry points into the video.

Day 1:

00:00: Introduction to the course

05:02: General introduction to supercomputing

14:06: High-speed introduction to GPU computing

32:57: Walk through introduction notebook on memory copy and performance evaluation

Day 2:

1:24:53: Introduction to day 2

1:39:12: Walk through solutions of exercise 1 and 2 (data "transfer" optimisations)

2:34:12: Walk through solutions of exercise 3 and 4 (data "transfer" optimisations and distributed parallelization)

Day 3:

03:31:57: Introduction to day 3

03:32:59: Presentation of notebook 1: cuda libraries

04:24:31: Presentation of notebook 2: programming models

05:30:46: Presentation of notebook 3: memory management

06:03:48: Presentation of notebook 4: concurrent computing

Day 4:

06:27:15: Introduction to day 4

06:28:13: Presentation of notebook 5: application analysis and optimisation

07:35:08: Presentation of notebook 6: kernel analysis and optimisation

Owner
Samuel Omlin
Computational Scientist | Responsible for Julia computing, CSCS - Swiss National Supercomputing Centre
Samuel Omlin
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022