Graphsignal Logger

Overview

Graphsignal Logger

Overview

Graphsignal is an observability platform for monitoring and troubleshooting production machine learning applications. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model performance and availability. Learn more at graphsignal.ai.

Model Dashboard

AI Observability

  • Model monitoring. Monitor offline and online predictions for data validity and anomalies, data drift and concept drift, prediction latency, exceptions, system metrics and more.
  • Automatic issue detection. Graphsignal automatically detects and notifies on issues in data and models, no need to manually setup and maintain complex rules.
  • Root cause analysis. Analyse prediction outliers and issue-related samples for faster problem root cause identification.
  • Model framework and deployment agnostic. Monitor models serving online, in streaming apps, accessed via APIs or offline, running batch predictions.
  • Any scale and data size. Graphsignal logger only sends data statistics and samples allowing it to scale with your application and data.
  • Team access. Easily add team members to your account, as many as you need.

Documentation

See full documentation at graphsignal.ai/docs.

Getting Started

Installation

Install the Python logger by running

pip install graphsignal

Or clone and install the GitHub repository.

git clone https://github.com/graphsignal/graphsignal.git
python setup.py install

And import the package in your application

import graphsignal

Configuration

Configure the logger by specifying the API key.

graphsignal.configure(api_key='my_api_key')

To get an API key, sign up for a free trial account at graphsignal.ai. The key can then be found in your account's Settings / API Keys page.

Logging session

Get logging session for a deployed model identified by deployment name. Multiple sessions can be used in parallel in case of multi-model scrips or servers.

sess = graphsignal.session(deployment_name='model1_prod')

If a model is versioned you can set the version as a model attribute.

Set model attributes.

sess.set_attribute('my attribute', 'value123')

Some system attributes, such as Python version and OS are added automatically.

Prediction Logging

Log single or batch model prediction/inference data. Pass prediction data according to supported data formats using list, dict, pandas.DataFrame or numpy.ndarray.

Computed data statistics such as feature and class distributions are uploaded at certain intervals and on process exit. Additionally, random and outlier prediction instances may be uploaded.

# Examples of input features and output classes.
x = pandas.DataFrame(data=[[0.1, 'A'], [0.2, 'B']], columns=['feature1', 'feature2'])
y = numpy.asarray([[0.2, 0.8], [0.1, 0.9]])

sess.log_prediction(input_data=x, output_data=y)

Track metrics. The last set value is used when metric is aggregated.

sess.log_metric('my_metric', 1.0)

Log any prediction-related event or exception.

sess.log_event(description='My event', attributes={'my_attr': '123'})

Measure prediction latency and record any exceptions.

with sess.measure_latency()
    my_model.predict(X)

See prediction logging API reference for full documentation.

Example

import numpy as np
from tensorflow import keras
import graphsignal

# Configure Graphsignal logger
graphsignal.configure(api_key='my_api_key')

# Get logging session for the model
sess = graphsignal.session(deployment_name='mnist_prod')


model = keras.models.load_model('mnist_model.h5')

(_, _), (x_test, _) = keras.datasets.mnist.load_data()
x_test = x_test.astype("float32") / 255
x_test = np.expand_dims(x_test, -1)

# Measure predict call latency
with sess.measure_latency()
    output = model.predict(x_test)

# See supported data formats description at 
# https://graphsignal.ai/docs/python-logger/supported-data-formats
sess.log_prediction(output_data=output)

# Report a metric
sess.log_metric('my_metric', 1.2)

See more examples.

Performance

When logging predictions, the data is windowed and only when certain time interval or window size conditions are met, data statistics are computed and sent along with a few sample and outlier data instances by the background thread.

Since only data statistics are sent to our servers, there is no limitation on logged data size and it doesn't have a direct effect on logging performance.

Security and Privacy

Graphsignal logger can only open outbound connections to log-api.graphsignal.ai and send data, no inbound connections or commands are possible.

Please make sure to exclude or anonymize any personally identifiable information (PII) when logging model data and events.

Troubleshooting

To enable debug logging, add debug_mode=True to configure(). If the debug log doesn't give you any hints on how to fix a problem, please report it to our support team via your account.

In case of connection issues, please make sure outgoing connections to https://log-api.graphsignal.ai are allowed.

《practical python programming》的中文翻译

欢迎光临 大约 25 年前,当我第一次学习 Python 时,发现 Python 竟然可以被高效地应用到各种混乱的工作项目上,我立即被震惊了。15 年前,我自己也将这种乐趣教授给别人。教学的结果就是本课程——一门实用的学习 Python的课程。

编程人 125 Dec 17, 2022
A data engineering project with Kafka, Spark Streaming, dbt, Docker, Airflow, Terraform, GCP and much more!

Streamify A data pipeline with Kafka, Spark Streaming, dbt, Docker, Airflow, Terraform, GCP and much more! Description Objective The project will stre

Ankur Chavda 206 Dec 30, 2022
Standard mutable string (character array) implementation for Python.

chararray A standard mutable character array implementation for Python.

Tushar Sadhwani 3 Dec 18, 2021
A MCPI hack with many features.

Morpheus 2.0 A MCPI hack with many features To Use: You will need to install the keyboard, pysimplegui, and MCPI python modules and you will need to e

11 Oct 11, 2022
Block when attacker want to bypass the limit of request

Block when attacker want to bypass the limit of request

iFanpS 1 Dec 01, 2021
Install JetBrains Toolbox

ansible-role-jetbrains-toolbox Install JetBrains Toolbox Example Playbook This example is taken from molecule/default/converge.yml and is tested on ea

Antoine Mace 2 Feb 04, 2022
Grouping nucleotide coordinate ranges.

NuclRanger Grouping nucleotide coordinate ranges. A quick pre-processing step for "bedtools getfasta":- https://bedtools.readthedocs.io/en/latest/cont

Sujanavan Tiruvayipati 1 Oct 04, 2022
Utils to quickly evaluate many 🤗 models on the GLUE tasks

Utils to quickly evaluate many 🤗 models on the GLUE tasks

Przemyslaw K. Joniak 1 Dec 22, 2021
Python implementation for Active Directory certificate abuse

Certipy is a Python tool to enumerate and abuse misconfigurations in Active Directory Certificate Services (AD CS). Based on the C# variant Ce

Oliver Lyak 1.3k Jan 09, 2023
Experiments with Tox plugin system

The project is an attempt to add to the tox some missing out of the box functionality. Basically it is just an extension for the tool that will be loa

Volodymyr Vitvitskyi 30 Nov 26, 2022
Modelling and Implementation of Cable Driven Parallel Manipulator System with Tension Control

Cable Driven Parallel Robots (CDPR) is also known as Cable-Suspended Robots are the emerging and flexible end effector manipulation system. Cable-driven parallel robots (CDPRs) are categorized as a t

Siddharth U 0 Jul 19, 2022
Problem statements on System Design and Software Architecture as part of Arpit's System Design Masterclass

Problem statements on System Design and Software Architecture as part of Arpit's System Design Masterclass

Relog 1.1k Jan 04, 2023
An app to help people apply for admissions on schools/hostels

Admission-helper About An app to help people apply for admissions on schools/hostels This app is a rewrite of Admission-helper-beta-v5.8.9 and I impor

Advik 3 Apr 24, 2022
Automatización del proceso Inmofianza

Selenium Inmofianza Proyecto de pruebas automatizadas con selenium webdriver para el aplicativo Omnicanalidad Pre-requisitos 📋 Componentes que deben

Natalia Narváez 1 Jan 07, 2022
Load, explore and analyse data from Scotland and rest of the world related to Covid19.

Streamlit Examples This is my first attempt with Streamlit. It is an open-source framework, free, Python-based and easy to use tool to build and deplo

Eyad Elyan 12 Mar 01, 2021
Bitflip Fault Simulation Platform by Daniele Rizzieri (2021)

SEE Injection Framework 2021 This repository contains two Single Event Effect (SEE) injection platforms. The first one is called BFSP - "Bitflip Fault

Daniele Rizzieri 2 Nov 05, 2022
A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

Institute for Transportation and Development Policy 2 Oct 16, 2022
My custom Fedora ostree build with sway/wayland.

Ramblurr's Sway Desktop This is an rpm-ostree based minimal Fedora developer desktop with the sway window manager and podman/toolbox for doing develop

Casey Link 1 Nov 28, 2021
Module for remote in-memory Python package/module loading through HTTP/S

httpimport Python's missing feature! The feature has been suggested in Python Mailing List Remote, in-memory Python package/module importing through H

John Torakis 220 Dec 17, 2022